scholarly journals Mycobacterial and Human Ferrous Nitrobindins: Spectroscopic and Reactivity Properties

2021 ◽  
Vol 22 (4) ◽  
pp. 1674
Author(s):  
Giovanna De Simone ◽  
Alessandra di Masi ◽  
Alessandra Pesce ◽  
Martino Bolognesi ◽  
Chiara Ciaccio ◽  
...  

Structural and functional properties of ferrous Mycobacterium tuberculosis (Mt-Nb) and human (Hs-Nb) nitrobindins (Nbs) were investigated. At pH 7.0 and 25.0 °C, the unliganded Fe(II) species is penta-coordinated and unlike most other hemoproteins no pH-dependence of its coordination was detected over the pH range between 2.2 and 7.0. Further, despite a very open distal side of the heme pocket (as also indicated by the vanishingly small geminate recombination of CO for both Nbs), which exposes the heme pocket to the bulk solvent, their reactivity toward ligands, such as CO and NO, is significantly slower than in most hemoproteins, envisaging either a proximal barrier for ligand binding and/or crowding of H2O molecules in the distal side of the heme pocket which impairs ligand binding to the heme Fe-atom. On the other hand, liganded species display already at pH 7.0 and 25 °C a severe weakening (in the case of CO) and a cleavage (in the case of NO) of the proximal Fe-His bond, suggesting that the ligand-linked movement of the Fe(II) atom onto the heme plane brings about a marked lengthening of the proximal Fe-imidazole bond, eventually leading to its rupture. This structural evidence is accompanied by a marked enhancement of both ligands dissociation rate constants. As a whole, these data clearly indicate that structural–functional relationships in Nbs strongly differ from what observed in mammalian and truncated hemoproteins, suggesting that Nbs play a functional role clearly distinct from other eukaryotic and prokaryotic hemoproteins.

1996 ◽  
Vol 315 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Oliver HOFMANN ◽  
Thomas BRITTAIN

The three human embryonic haemoglobins have been studied using a range of stopped-flow and flash photolysis experiments. The association and dissociation kinetics and equilibrium constants for the tetramer–dimer reactions of the deoxy and oxygenated forms have been investigated and found to be characterized by constants similar to those of the human adult protein. The rates of oxygen dissociation from the embryonic haemoglobins have been measured and appear to be responsible for the high oxygen-binding affinity associated with the embryonic proteins compared with the adult protein. The pH dependence of the oxygen dissociation rate constants also accounts for the rather unusual, previously described, Bohr effects characteristic of the embryonic haemoglobins. A general scheme has been developed coupling both the dimer–tetramer equilibria and ligand-binding steps observed following photolysis of the liganded forms of the human embryonic haemoglobins.


1989 ◽  
Vol 54 (1) ◽  
pp. 64-69 ◽  
Author(s):  
Roland Meier ◽  
Gerhard Werner ◽  
Matthias Otto

Electrochemical oxidation of [V(IV)O(nta)(H2O)]- (H3nta nitrilotriacetic acid) was studied in aqueous solution by means of cyclic voltammetry, differential pulse polarography, and current sampled DC polarography on mercury as electrode material. In the pH-range under study (5.5-9.0) the corresponding V(V) complex is produced by one-electron oxidation of the parent V(IV) species. The oxidation product is stable within the time scale of cyclic voltammetry. The evaluation of the pH-dependence of the half-wave potentials leads to a pKa value for [V(IV)O(nta)(H2O)]- which is in a good agreement with previous determinations. The measured value for E1/2 is very close to the formal potential E0 calculated via the Nernst equation on the basis of known literature values for log Kox and log Kred, the complex stability constants for the oxidized and reduced form, respectively.


2006 ◽  
Vol 128 (5) ◽  
pp. 615-627 ◽  
Author(s):  
Sergio Elenes ◽  
Ying Ni ◽  
Gisela D. Cymes ◽  
Claudio Grosman

Although the muscle nicotinic receptor (AChR) desensitizes almost completely in the steady presence of high concentrations of acetylcholine (ACh), it is well established that AChRs do not accumulate in desensitized states under normal physiological conditions of neurotransmitter release and clearance. Quantitative considerations in the framework of plausible kinetic schemes, however, lead us to predict that mutations that speed up channel opening, slow down channel closure, and/or slow down the dissociation of neurotransmitter (i.e., gain-of-function mutations) increase the extent to which AChRs desensitize upon ACh removal. In this paper, we confirm this prediction by applying high-frequency trains of brief (∼1 ms) ACh pulses to outside-out membrane patches expressing either lab-engineered or naturally occurring (disease-causing) gain-of-function mutants. Entry into desensitization was evident in our experiments as a frequency-dependent depression in the peak value of succesive macroscopic current responses, in a manner that is remarkably consistent with the theoretical expectation. We conclude that the comparatively small depression of the macroscopic currents observed upon repetitive stimulation of the wild-type AChR is due, not to desensitization being exceedingly slow but, rather, to the particular balance between gating, entry into desensitization, and ACh dissociation rate constants. Disruption of this fine balance by, for example, mutations can lead to enhanced desensitization even if the kinetics of entry into, and recovery from, desensitization themselves are not affected. It follows that accounting for the (usually overlooked) desensitization phenomenon is essential for the correct interpretation of mutagenesis-driven structure–function relationships and for the understanding of pathological synaptic transmission at the vertebrate neuromuscular junction.


2012 ◽  
Vol 287 (9) ◽  
pp. 6693-6701 ◽  
Author(s):  
Nadia N. Casillas-Ituarte ◽  
Brian H. Lower ◽  
Supaporn Lamlertthon ◽  
Vance G. Fowler ◽  
Steven K. Lower

1987 ◽  
Vol 166 (2) ◽  
pp. 399-408 ◽  
Author(s):  
Robert M. COOKE ◽  
Claudio DALVIT ◽  
Surinder S. NARULA ◽  
Peter E. WRIGHT

Sign in / Sign up

Export Citation Format

Share Document