scholarly journals CHIR99021 Augmented the Function of Late Endothelial Progenitor Cells by Preventing Replicative Senescence

2021 ◽  
Vol 22 (9) ◽  
pp. 4796
Author(s):  
Vinoth Kumar Rethineswaran ◽  
Da Yeon Kim ◽  
Yeon-Ju Kim ◽  
WoongBi Jang ◽  
Seung Taek Ji ◽  
...  

Endothelial progenitor cells (EPCs) are specialized cells in circulating blood, well known for their ability to form new vascular structures. Aging and various ailments such as diabetes, atherosclerosis and cardiovascular disease make EPCs vulnerable to decreasing in number, which affects their migration, proliferation and angiogenesis. Myocardial ischemia is also linked to a reduced number of EPCs and their endothelial functional role, which hinders proper blood circulation to the myocardium. The current study shows that an aminopyrimidine derivative compound (CHIR99021) induces the inhibition of GSK-3β in cultured late EPCs. GSK-3β inhibition subsequently inhibits mTOR by blocking the phosphorylation of TSC2 and lysosomal localization of mTOR. Furthermore, suppression of GSK-3β activity considerably increased lysosomal activation and autophagy. The activation of lysosomes and autophagy by GSK-3β inhibition not only prevented replicative senescence of the late EPCs but also directed their migration, proliferation and angiogenesis. To conclude, our results demonstrate that lysosome activation and autophagy play a crucial role in blocking the replicative senescence of EPCs and in increasing their endothelial function. Thus, the findings provide an insight towards the treatment of ischemia-associated cardiovascular diseases based on the role of late EPCs.

2013 ◽  
Vol 394 (10) ◽  
pp. 1241-1252 ◽  
Author(s):  
Michael Donahue ◽  
Cristina Quintavalle ◽  
Giovanni Alfonso Chiariello ◽  
Gerolama Condorelli ◽  
Carlo Briguori

Abstract In the last two decades a great deal of evidence has been collected on the key role of endothelial progenitor cells (EPC) in the mechanisms of vascular healing. The role of EPC as a marker of vascular health and prognosis of cardiovascular disease is already consolidated. This review aims to examine and evaluate recent data regarding EPC, as biomarkers, prognostic factor and potential therapy in cardiovascular disease.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 937.1-937
Author(s):  
V. Pulito-Cueto ◽  
S. Remuzgo-Martínez ◽  
F. Genre ◽  
V. M. Mora-Cuesta ◽  
D. Iturbe Fernández ◽  
...  

Background:Interstitial lung disease (ILD) is one of the most significant comorbidities of rheumatoid arthritis (RA), increasing the mortality in these patients [1,2]. Although the pathogenesis of ILD associated to RA (RA-ILD+) remains poorly defined [1], it is known that vascular tissue plays a crucial role in lung physiology [3]. In this context, a population of cells termed endothelial progenitor cells (EPC) are involved in vasculogenesis and endothelial tissue repair [4]. Previous reports suggest the implication of EPC in different conditions such as RA and idiopathic pulmonary fibrosis (IPF), the most common and destructive ILD [5,6]. Nevertheless, little is known about their specific role in RA-ILD+.Objectives:The purpose of this study was to shed light on the potential role of EPC in endothelial damage in RA-ILD+.Methods:Peripheral venous blood was collected from a total of 68 individuals (18 with RA-ILD+, 17 with RA-ILD-, 19 with IPF and 14 healthy controls). All subjects were recruited from the Rheumatology and Pneumology departments of Hospital Universitario Marqués de Valdecilla, Santander, Spain. Quantification of EPC was analyzed by the expression of surface antigens by flow cytometry. The combination of antibodies against the stem cell marker CD34, the immature progenitor marker CD133, the endothelial marker VEGF receptor 2 (CD309) and the common leukocyte antigen CD45 was used. EPC were considered as CD34+, CD45Low, CD309+and CD133+. All statistical analyses were performed using Prism software 5 (GraphPad).Results:EPC frequency was significantly increased in patients with RA-ILD+, RA-ILD-and IPF compared to controls (p=0.001, p=0.002, p< 0.0001, respectively). Nevertheless, patients with RA, both RA-ILD+and RA-ILD-, showed a lower frequency of EPC than those with IPF (p= 0.048, p= 0.006, respectively).Conclusion:Our results provide evidence for a potential role of EPC as a reparative compensatory mechanism related to endothelial damage in RA-ILD+, RA-ILD-and IPF patients. Interestingly, EPC frequency may help to establish a differential diagnostic between patients with IPF and those who have an underlying autoimmune disease (RA-ILD+).References:[1] J Clin Med 2019; 8: 2038;[2] Arthritis Rheumatol 2015; 67: 28-38;[3] Nat Protoc 2015; 10: 1697-1708;[4] Science 1997; 275: 964-966;[5] Rheumatology (Oxford) 2012; 51: 1775-1784;[6] Angiogenesis 2013; 16: 147-157.Acknowledgments:Personal funds, VP-C: PREVAL18/01 (IDIVAL); SR-M: RD16/0012/0009 (ISCIII-ERDF); LL-G: PI18/00042 (ISCIII-ERDF); RL-M: Miguel Servet type I CP16/00033 (ISCIII-ESF).Disclosure of Interests:Verónica Pulito-Cueto: None declared, Sara Remuzgo-Martínez: None declared, Fernanda Genre: None declared, Victor Manuel Mora-Cuesta: None declared, David Iturbe Fernández: None declared, Sonia Fernández-Rozas: None declared, Leticia Lera-Gómez: None declared, Pilar Alonso Lecue: None declared, Javier Rodriguez Carrio: None declared, Belén Atienza-Mateo: None declared, Virginia Portilla: None declared, David Merino: None declared, Ricardo Blanco Grant/research support from: AbbVie, MSD, Roche, Consultant of: Abbvie, Eli Lilly, Pfizer, Roche, Bristol-Myers, Janssen, UCB Pharma and MSD, Speakers bureau: Abbvie, Eli Lilly, Pfizer, Roche, Bristol-Myers, Janssen, UCB Pharma. MSD, Alfonso Corrales Speakers bureau: Abbvie, Jose Manuel Cifrián-Martínez: None declared, Raquel López-Mejías: None declared, Miguel A González-Gay Grant/research support from: Pfizer, Abbvie, MSD, Speakers bureau: Pfizer, Abbvie, MSD


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1152
Author(s):  
Alberto Polo-Montalvo ◽  
Laura Casarrubios ◽  
María Concepción Serrano ◽  
Adrián Sanvicente ◽  
María José Feito ◽  
...  

Due to their specific mesoporous structure and large surface area, mesoporous bioactive glasses (MBGs) possess both drug-delivery ability and effective ionic release to promote bone regeneration by stimulating osteogenesis and angiogenesis. Macrophages secrete mediators that can affect both processes, depending on their phenotype. In this work, the action of ion release from MBG-75S, with a molar composition of 75SiO2-20CaO-5P2O5, on osteogenesis and angiogenesis and the modulatory role of macrophages have been assessed in vitro with MC3T3-E1 pre-osteoblasts and endothelial progenitor cells (EPCs) in monoculture and in coculture with RAW 264.7 macrophages. Ca2+, phosphorous, and silicon ions released from MBG-75S were measured in the culture medium during both differentiation processes. Alkaline phosphatase activity and matrix mineralization were quantified as the key markers of osteogenic differentiation in MC3T3-E1 cells. The expression of CD31, CD34, VEGFR2, eNOS, and vWF was evaluated to characterize the EPC differentiation into mature endothelial cells. Other cellular parameters analyzed included the cell size and complexity, intracellular calcium, and intracellular content of the reactive oxygen species. The results obtained indicate that the ions released by MBG-75S promote osteogenesis and angiogenesis in vitro, evidencing a macrophage inhibitory role in these processes and demonstrating the high potential of MBG-75S for the preparation of implants for bone regeneration.


2013 ◽  
Vol 61 (10) ◽  
pp. E1371
Author(s):  
Francesca Felice ◽  
Rossella Di Stefano ◽  
Stefano Pini ◽  
Gianfranco Mazzotta ◽  
Francesco M. Bovenzi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document