scholarly journals Impact of Intrinsic Muscle Weakness on Muscle–Bone Crosstalk in Osteogenesis Imperfecta

2021 ◽  
Vol 22 (9) ◽  
pp. 4963
Author(s):  
Victoria L. Gremminger ◽  
Charlotte L. Phillips

Bone and muscle are highly synergistic tissues that communicate extensively via mechanotransduction and biochemical signaling. Osteogenesis imperfecta (OI) is a heritable connective tissue disorder of severe bone fragility and recently recognized skeletal muscle weakness. The presence of impaired bone and muscle in OI leads to a continuous cycle of altered muscle–bone crosstalk with weak muscles further compromising bone and vice versa. Currently, there is no cure for OI and understanding the pathogenesis of the skeletal muscle weakness in relation to the bone pathogenesis of OI in light of the critical role of muscle–bone crosstalk is essential to developing and identifying novel therapeutic targets and strategies for OI. This review will highlight how impaired skeletal muscle function contributes to the pathophysiology of OI and how this phenomenon further perpetuates bone fragility.

2016 ◽  
Vol 6 ◽  
Author(s):  
Erick O. Hernández-Ochoa ◽  
Stephen J. P. Pratt ◽  
Richard M. Lovering ◽  
Martin F. Schneider

2021 ◽  
Author(s):  
◽  
Victoria L. Gremminger

Osteogenesis imperfecta (OI), also commonly referred to as brittle bone disease, is a heritable connective tissue disorder occurring in roughly 1:15,000 births. OI arises as a result of mutations in the type I collagen genes, COL1A1 and COL1A2, approximately 85 [percent] of the time with the remaining 15 [percent] of cases arising from mutations in genes involved in posttranslational modification of type I collagen, osteoblast maturation or mineralization. OI is a heterogeneous disorder that can be classified into four major types with severity ranging from perinatal lethality to premature osteoporosis. As the name suggests, osteogenesis imperfecta, literally translating to imperfect bone formation, results in bone fragility with patients often experiencing many fractures throughout their lifetime. While bone fragility is the most prominent manifestation of OI, skeletal muscle weakness, cardiopulmonary complications, short stature, and craniofacial abnormalities are also common. There is currently no cure for OI and therapeutic options rely on mitigating symptoms, primarily through the use of bone anti-resorptive agents referred to as bisphosphonates. Although, current treatment options focus solely on bone health, skeletal muscle weakness is a common manifestation in OI, where 80 [percent] of patients with mild OI experience muscle force deficits, and with even higher percentages in patients with more clinically severe OI. Historically, OI muscle weakness was largely attributed to inactivity with recent studies highlighting its inherent nature in both patients and mouse models. Studies investigating the mechanisms by which skeletal muscle weakness arises in OI are limited, despite the large prevalence. My research sought to better understand OI muscle weakness primarily through the investigation of mitochondrial health in a mouse modeling a severe human type III OI (oim/oim), as mitochondria are important regulators of energy metabolism and overall cell health. We hypothesized that oim/oim mice, exhibiting severe skeletal muscle weakness would exhibit mitochondrial dysfunction suggesting a correlation between skeletal muscle and mitochondrial function. To test this hypothesis, we assessed mitochondrial function and content in the oim/oim mouse. One of our major findings was the observation that oim/oim mice exhibit [greater than] 50 [percent] reductions in gastrocnemius mitochondrial respiration rates relative to wildtype littermates. Additionally, we found that citrate synthase activity in oim/oim isolated gastrocnemius mitochondria was reduced relative to wildtype littermates. Furthermore, to determine if skeletal muscle mitochondrial function correlated with skeletal muscle severity, we evaluated mitochondrial respiration in a mouse model of mild OI (+/oim). We did not find differences between +/oim and WT gastrocnemius mitochondrial respiration suggesting that mitochondrial function does correlate with skeletal muscle function. Moreover, we did not observe changes in mitochondrial respiration in oim/oim liver and heart suggesting the mitochondrial dysfunction is not global in the oim/oim mouse. Additionally, we sought to investigate whole body metabolic alterations, as skeletal muscle comprises roughly 50 [percent] of body mass and is a significant contributor to the body's resting metabolic rate. We hypothesized that skeletal muscle mitochondrial dysfunction in the oim/oim mouse would lead to changes in metabolic parameters including altered substrate utilization, altered body composition, and changes in energy expenditure. Interestingly, we did not observe changes in substrate utilization, although we did note increased energy expenditure and subtle changes in body composition with oim/oim animals exhibiting reduced percentages of fat mass and increased percentages of lean mass relative to wildtype littermates. Overall, my research was the first to implicate mitochondrial dysfunction in the pathophysiology of OI using a mouse model of severe OI. This work has led to numerous studies in other mouse models evaluating mitochondrial function and energy metabolism. While there is more work to be done to further understand the mechanisms and correlation between mitochondrial dysfunction and skeletal muscle weakness in OI, this novel finding has initiated a new area of research in OI and has contributed to the overall understanding of OI muscle weakness.


2003 ◽  
Vol 95 (4) ◽  
pp. 1379-1384 ◽  
Author(s):  
Sinead C. Barry ◽  
Charles G. Gallagher

Patients with cystic fibrosis (CF) have reduced peripheral muscle strength. We tested the hypothesis that steroid treatment contributes to muscle weakness in adults with CF. Twenty-three stable CF patients were studied. Measurements included knee extensor (KE), knee flexor (KF), elbow flexor (EF), handgrip (HG), expiratory (Pemax), and inspiratory (Pimax) muscle strengths. Spirometry, body mass index (BMI), and days spent in hospital over the preceding 12 mo (DH) were also measured. Average daily dose of prednisolone over the preceding 12 mo (ADD) was 5.1 mg/day. Pearson's correlation analysis revealed that ADD correlated significantly with skeletal muscle strengths (KF%, r = -0.63, P < 0.01) with the exception of HG%. These findings are independent of age, BMI, pulmonary function, and DH. Multiple-regression analysis revealed that ADD was the most significant predictor of all measures of skeletal muscle function except HG%. It was independently responsible for 54% of the variance in Pimax%, for 46% of the variance in Pemax%, for 45% of the variance in KE%, for 39% of the variance in KF%, and for 41% of the variance in EF%. Concomitant medications (e.g., theophylline) were shown to have no causative effect. Corticosteroids contribute to the skeletal muscle weakness seen in CF patients. The correlation of proximal muscle strength, but not HG strength, with steroid dosage further supports a cause-effect relationship.


2019 ◽  
Vol 10 (4) ◽  
pp. 929-949 ◽  
Author(s):  
Matthew J. Myers ◽  
Danielle L. Shepherd ◽  
Andrya J. Durr ◽  
David S. Stanton ◽  
Junaith S. Mohamed ◽  
...  

2019 ◽  
Vol 125 (Suppl_1) ◽  
Author(s):  
Somik Chatterjee ◽  
Shumin Li ◽  
Aijun Zhang ◽  
Indira Vedula ◽  
Judy A AlRukby ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Veronica Granatiero ◽  
Gaia Gherardi ◽  
Matteo Vianello ◽  
Elsa Salerno ◽  
Erika Zecchini ◽  
...  

2010 ◽  
Vol 109 (3) ◽  
pp. 830-839 ◽  
Author(s):  
Chengju Tian ◽  
Chun Hong Shao ◽  
Danielle S. Fenster ◽  
Mark Mixan ◽  
Debra J. Romberger ◽  
...  

Skeletal muscle weakness is a reported ailment in individuals working in commercial hog confinement facilities. To date, specific mechanisms responsible for this symptom remain undefined. The purpose of this study was to assess whether hog barn dust (HBD) contains components that are capable of binding to and modulating the activity of type 1 ryanodine receptor Ca2+-release channel (RyR1), a key regulator of skeletal muscle function. HBD collected from confinement facilities in Nebraska were extracted with chloroform, filtered, and rotary evaporated to dryness. Residues were resuspended in hexane-chloroform (20:1) and precipitates, referred to as HBDorg, were air-dried and studied further. In competition assays, HBDorg dose-dependently displaced [3H]ryanodine from binding sites on RyR1 with an IC50 of 1.5 ± 0.1 μg/ml ( Ki = 0.4 ± 0.0 μg/ml). In single-channel assays using RyR1 reconstituted into a lipid bilayer, HBDorg exhibited three distinct dose-dependent effects: first it increased the open probability of RyR1 by increasing its gating frequency and dwell time in the open state, then it induced a state of reduced conductance (55% of maximum) that was more likely to occur and persist at positive holding potentials, and finally it irreversibly closed RyR1. In differentiated C2C12 myotubes, addition of HBD triggered a rise in intracellular Ca2+ that was blocked by pretreatment with ryanodine. Since persistent activation and/or closure of RyR1 results in skeletal muscle weakness, these new data suggest that HBD is responsible, at least in part, for the muscle ailment reported by hog confinement workers.


Sign in / Sign up

Export Citation Format

Share Document