scholarly journals Skeletal muscle weakness and mitochondrial dysfunction in the osteogenesis imperfecta murine (oim) model

2021 ◽  
Author(s):  
◽  
Victoria L. Gremminger

Osteogenesis imperfecta (OI), also commonly referred to as brittle bone disease, is a heritable connective tissue disorder occurring in roughly 1:15,000 births. OI arises as a result of mutations in the type I collagen genes, COL1A1 and COL1A2, approximately 85 [percent] of the time with the remaining 15 [percent] of cases arising from mutations in genes involved in posttranslational modification of type I collagen, osteoblast maturation or mineralization. OI is a heterogeneous disorder that can be classified into four major types with severity ranging from perinatal lethality to premature osteoporosis. As the name suggests, osteogenesis imperfecta, literally translating to imperfect bone formation, results in bone fragility with patients often experiencing many fractures throughout their lifetime. While bone fragility is the most prominent manifestation of OI, skeletal muscle weakness, cardiopulmonary complications, short stature, and craniofacial abnormalities are also common. There is currently no cure for OI and therapeutic options rely on mitigating symptoms, primarily through the use of bone anti-resorptive agents referred to as bisphosphonates. Although, current treatment options focus solely on bone health, skeletal muscle weakness is a common manifestation in OI, where 80 [percent] of patients with mild OI experience muscle force deficits, and with even higher percentages in patients with more clinically severe OI. Historically, OI muscle weakness was largely attributed to inactivity with recent studies highlighting its inherent nature in both patients and mouse models. Studies investigating the mechanisms by which skeletal muscle weakness arises in OI are limited, despite the large prevalence. My research sought to better understand OI muscle weakness primarily through the investigation of mitochondrial health in a mouse modeling a severe human type III OI (oim/oim), as mitochondria are important regulators of energy metabolism and overall cell health. We hypothesized that oim/oim mice, exhibiting severe skeletal muscle weakness would exhibit mitochondrial dysfunction suggesting a correlation between skeletal muscle and mitochondrial function. To test this hypothesis, we assessed mitochondrial function and content in the oim/oim mouse. One of our major findings was the observation that oim/oim mice exhibit [greater than] 50 [percent] reductions in gastrocnemius mitochondrial respiration rates relative to wildtype littermates. Additionally, we found that citrate synthase activity in oim/oim isolated gastrocnemius mitochondria was reduced relative to wildtype littermates. Furthermore, to determine if skeletal muscle mitochondrial function correlated with skeletal muscle severity, we evaluated mitochondrial respiration in a mouse model of mild OI (+/oim). We did not find differences between +/oim and WT gastrocnemius mitochondrial respiration suggesting that mitochondrial function does correlate with skeletal muscle function. Moreover, we did not observe changes in mitochondrial respiration in oim/oim liver and heart suggesting the mitochondrial dysfunction is not global in the oim/oim mouse. Additionally, we sought to investigate whole body metabolic alterations, as skeletal muscle comprises roughly 50 [percent] of body mass and is a significant contributor to the body's resting metabolic rate. We hypothesized that skeletal muscle mitochondrial dysfunction in the oim/oim mouse would lead to changes in metabolic parameters including altered substrate utilization, altered body composition, and changes in energy expenditure. Interestingly, we did not observe changes in substrate utilization, although we did note increased energy expenditure and subtle changes in body composition with oim/oim animals exhibiting reduced percentages of fat mass and increased percentages of lean mass relative to wildtype littermates. Overall, my research was the first to implicate mitochondrial dysfunction in the pathophysiology of OI using a mouse model of severe OI. This work has led to numerous studies in other mouse models evaluating mitochondrial function and energy metabolism. While there is more work to be done to further understand the mechanisms and correlation between mitochondrial dysfunction and skeletal muscle weakness in OI, this novel finding has initiated a new area of research in OI and has contributed to the overall understanding of OI muscle weakness.

2021 ◽  
Vol 22 (9) ◽  
pp. 4963
Author(s):  
Victoria L. Gremminger ◽  
Charlotte L. Phillips

Bone and muscle are highly synergistic tissues that communicate extensively via mechanotransduction and biochemical signaling. Osteogenesis imperfecta (OI) is a heritable connective tissue disorder of severe bone fragility and recently recognized skeletal muscle weakness. The presence of impaired bone and muscle in OI leads to a continuous cycle of altered muscle–bone crosstalk with weak muscles further compromising bone and vice versa. Currently, there is no cure for OI and understanding the pathogenesis of the skeletal muscle weakness in relation to the bone pathogenesis of OI in light of the critical role of muscle–bone crosstalk is essential to developing and identifying novel therapeutic targets and strategies for OI. This review will highlight how impaired skeletal muscle function contributes to the pathophysiology of OI and how this phenomenon further perpetuates bone fragility.


2021 ◽  
Vol 10 (14) ◽  
pp. 3141
Author(s):  
Hyerin Jung ◽  
Yeri Alice Rim ◽  
Narae Park ◽  
Yoojun Nam ◽  
Ji Hyeon Ju

Osteogenesis imperfecta (OI) is a genetic disease characterized by bone fragility and repeated fractures. The bone fragility associated with OI is caused by a defect in collagen formation due to mutation of COL1A1 or COL1A2. Current strategies for treating OI are not curative. In this study, we generated induced pluripotent stem cells (iPSCs) from OI patient-derived blood cells harboring a mutation in the COL1A1 gene. Osteoblast (OB) differentiated from OI-iPSCs showed abnormally decreased levels of type I collagen and osteogenic differentiation ability. Gene correction of the COL1A1 gene using CRISPR/Cas9 recovered the decreased type I collagen expression in OBs differentiated from OI-iPSCs. The osteogenic potential of OI-iPSCs was also recovered by the gene correction. This study suggests a new possibility of treatment and in vitro disease modeling using patient-derived iPSCs and gene editing with CRISPR/Cas9.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1493
Author(s):  
Malwina Botor ◽  
Agnieszka Fus-Kujawa ◽  
Marta Uroczynska ◽  
Karolina L. Stepien ◽  
Anna Galicka ◽  
...  

Osteogenesis Imperfecta (OI) is a group of connective tissue disorders with a broad range of phenotypes characterized primarily by bone fragility. The prevalence of OI ranges from about 1:15,000 to 1:20,000 births. Five types of the disease are commonly distinguished, ranging from a mild (type I) to a lethal one (type II). Types III and IV are severe forms allowing survival after the neonatal period, while type V is characterized by a mild to moderate phenotype with calcification of interosseous membranes. In most cases, there is a reduction in the production of normal type I collagen (col I) or the synthesis of abnormal collagen as a result of mutations in col I genes. Moreover, mutations in genes involved in col I synthesis and processing as well as in osteoblast differentiation have been reported. The currently available treatments try to prevent fractures, control symptoms and increase bone mass. Commonly used medications in OI treatment are bisphosphonates, Denosumab, synthetic parathyroid hormone and growth hormone for children therapy. The main disadvantages of these therapies are their relatively weak effectiveness, lack of effects in some patients or cytotoxic side effects. Experimental approaches, particularly those based on stem cell transplantation and genetic engineering, seem to be promising to improve the therapeutic effects of OI.


2020 ◽  
Vol 183 (4) ◽  
pp. R95-106 ◽  
Author(s):  
Ronit Marom ◽  
Brien M Rabenhorst ◽  
Roy Morello

Osteogenesis imperfecta (OI) is an inherited skeletal dysplasia characterized by bone fragility and skeletal deformities. While the majority of cases are associated with pathogenic variants in COL1A1 and COL1A2, the genes encoding type I collagen, up to 25% of cases are associated with other genes that function within the collagen biosynthesis pathway or are involved in osteoblast differentiation and bone mineralization. Clinically, OI is heterogeneous in features and variable in severity. In addition to the skeletal findings, it can affect multiple systems including dental and craniofacial abnormalities, muscle weakness, hearing loss, respiratory and cardiovascular complications. A multi-disciplinary approach to care is recommended to address not only the fractures, reduced mobility, growth and bone pain but also other extra-skeletal manifestations. While bisphosphonates remain the mainstay of treatment in OI, new strategies are being explored, such as sclerostin inhibitory antibodies and TGF beta inhibition, to address not only the low bone mineral density but also the inherent bone fragility. Studies in animal models have expanded the understanding of pathomechanisms of OI and, along with ongoing clinical trials, will allow to develop better therapeutic approaches for these patients.


2014 ◽  
Vol 21 (1) ◽  
pp. 100-103
Author(s):  
Rūta Kisielienė ◽  
Rasa Kupčiūnaitė ◽  
Diana Bužinskienė ◽  
Gražina Drąsutienė

Osteogenesis imperfecta (OI) is a rare inherited connective tissue disorder, in which synthesis or structure of type I collagen is defective, causing reduced osseous density and increased bone fragility. There is presented a case report of type V osteogenesis imperfecta woman pregnancy and delivery, analyzed physiological changes during pregnancy, prenatal diagnosis, osteogenesis imperfecta influence to pregnancy and mode of delivery. Due to a vast variety of phenotype and insufficient data, individual analysis of each case and mode of delivery should be done by a multidisciplinary team. Osteogenesis imperfecta is an extragenital disorder and it‘s not a contraindication to pregnancy


Author(s):  
Outi Mäkitie ◽  
M. Carola Zillikens

AbstractOsteoporosis is a skeletal disorder with enhanced bone fragility, usually affecting the elderly. It is very rare in children and young adults and the definition is not only based on a low BMD (a Z-score < − 2.0 in growing children and a Z-score ≤ − 2.0 or a T-score ≤ − 2.5 in young adults) but also on the occurrence of fragility fractures and/or the existence of underlying chronic diseases or secondary factors such as use of glucocorticoids. In the absence of a known chronic disease, fragility fractures and low BMD should prompt extensive screening for secondary causes, which can be found in up to 90% of cases. When fragility fractures occur in childhood or young adulthood without an evident secondary cause, investigations should explore the possibility of an underlying monogenetic bone disease, where bone fragility is caused by a single variant in a gene that has a major role in the skeleton. Several monogenic forms relate to type I collagen, but other forms also exist. Loss-of-function variants in LRP5 and WNT1 may lead to early-onset osteoporosis. The X-chromosomal osteoporosis caused by PLS3 gene mutations affects especially males. Another recently discovered form relates to disturbed sphingolipid metabolism due to SGMS2 mutations, underscoring the complexity of molecular pathology in monogenic early-onset osteoporosis. Management of young patients consists of treatment of secondary factors, optimizing lifestyle factors including calcium and vitamin D and physical exercise. Treatment with bone-active medication should be discussed on a personalized basis, considering the severity of osteoporosis and underlying disease versus the absence of evidence on anti-fracture efficacy and potential harmful effects in pregnancy.


Sign in / Sign up

Export Citation Format

Share Document