scholarly journals Multi-Omics Approach to Mitochondrial DNA Damage in Human Muscle Fibers

2021 ◽  
Vol 22 (20) ◽  
pp. 11080
Author(s):  
Matthias Elstner ◽  
Konrad Olszewski ◽  
Holger Prokisch ◽  
Thomas Klopstock ◽  
Marta Murgia

Mitochondrial DNA deletions affect energy metabolism at tissue-specific and cell-specific threshold levels, but the pathophysiological mechanisms determining cell fate remain poorly understood. Chronic progressive external ophthalmoplegia (CPEO) is caused by mtDNA deletions and characterized by a mosaic distribution of muscle fibers with defective cytochrome oxidase (COX) activity, interspersed among fibers with retained functional respiratory chain. We used diagnostic histochemistry to distinguish COX-negative from COX-positive fibers in nine muscle biopsies from CPEO patients and performed laser capture microdissection (LCM) coupled to genome-wide gene expression analysis. To gain molecular insight into the pathogenesis, we applied network and pathway analysis to highlight molecular differences of the COX-positive and COX-negative fiber transcriptome. We then integrated our results with proteomics data that we previously obtained comparing COX-positive and COX-negative fiber sections from three other patients. By virtue of the combination of LCM and a multi-omics approach, we here provide a comprehensive resource to tackle the pathogenic changes leading to progressive respiratory chain deficiency and disease in mitochondrial deletion syndromes. Our data show that COX-negative fibers upregulate transcripts involved in translational elongation and protein synthesis. Furthermore, based on functional annotation analysis, we find that mitochondrial transcripts are the most enriched among those with significantly different expression between COX-positive and COX-negative fibers, indicating that our unbiased large-scale approach resolves the core of the pathogenic changes. Further enrichments include transcripts encoding LIM domain proteins, ubiquitin ligases, proteins involved in RNA turnover, and, interestingly, cell cycle arrest and cell death. These pathways may thus have a functional association to the molecular pathogenesis of the disease. Overall, the transcriptome and proteome show a low degree of correlation in CPEO patients, suggesting a relevant contribution of post-transcriptional mechanisms in shaping this disease phenotype.

2020 ◽  
Vol 10 (11) ◽  
pp. 766 ◽  
Author(s):  
Nicole Anteneová ◽  
Silvie Kelifová ◽  
Hana Kolářová ◽  
Alžběta Vondráčková ◽  
Iveta Tóthová ◽  
...  

Background: In this retrospective study, we analysed clinical, biochemical and molecular genetic data of 47 Czech patients with Single, Large-Scale Mitochondrial DNA Deletions (SLSMD). Methods: The diagnosis was based on the long-range PCR (LX-PCR) screening of mtDNA isolated from muscle biopsy in 15 patients, and from the buccal swab, urinary epithelial cells and blood in 32 patients. Results: A total of 57% patients manifested before the age of 16. We did not find any significant difference between paediatric and adult manifestation in either the proportion of patients that would develop extraocular symptoms, or the timespan of its progression. The survival rate in patients with Pearson Syndrome reached 60%. Altogether, five patients manifested with atypical phenotype not fulfilling the latest criteria for SLSMD. No correlation was found between the disease severity and all heteroplasmy levels, lengths of the deletion and respiratory chain activities in muscle. Conclusions: Paediatric manifestation of Progressive External Ophthalmoplegia (PEO) is not associated with a higher risk of multisystemic involvement. Contrary to PEO and Kearns-Sayre Syndrome Spectrum, Pearson Syndrome still contributes to a significant childhood mortality. SLSMD should be considered even in cases with atypical presentation. To successfully identify carriers of SLSMD, a repeated combined analysis of buccal swab and urinary epithelial cells is needed.


2016 ◽  
Vol 263 (7) ◽  
pp. 1449-1451 ◽  
Author(s):  
Lorenzo Gaetani ◽  
Andrea Mignarri ◽  
Maria Di Gregorio ◽  
Paola Sarchielli ◽  
Alessandro Malandrini ◽  
...  

2001 ◽  
Vol 38 (2-3) ◽  
pp. 153-158 ◽  
Author(s):  
Barry J. Barclay ◽  
Carrie L. DeHaan ◽  
Ursula G.G. Hennig ◽  
Oksana Iavorovska ◽  
Reid W. von Borstel ◽  
...  

2021 ◽  
Author(s):  
Daniel Hipps ◽  
Philip Dobson ◽  
Charlotte Warren ◽  
David McDonald ◽  
Andrew Fuller ◽  
...  

Mitochondria contain their own genome which encodes 13 essential mitochondrial proteins and accumulates somatic variants at up to 10 times the rate of the nuclear genome. These mitochondrial genome variants lead to respiratory chain deficiency and cellular dysfunction. Work with the PolgAmut/PolgAmut mouse model, which has a high mitochondrial DNA mutation rate, showed enhanced levels of age related osteoporosis in affected mice along with respiratory chain deficiency in osteoblasts. To explore whether respiratory chain deficiency is also seen in human osteoblasts with age, we developed a protocol and analysis framework for imaging mass cytometry (IMC) in bone tissue sections to analyse osteoblasts in situ. We have demonstrated significant increases in complex I deficiency with age in human osteoblasts. This work is consistent with findings from the PolgAmut/PolgAmut mouse model and suggests that respiratory chain deficiency, as a consequence of the accumulation of age related mitochondrial DNA mutations, may have a significant role to play in the pathogenesis of human age related osteoporosis.


1997 ◽  
Vol 4 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Marie J.B Jean-Francois ◽  
Steve Collins ◽  
Nicky Kotsimbos ◽  
Xenia Dennett ◽  
Edward Byrne

Neurology ◽  
2005 ◽  
Vol 64 (6) ◽  
pp. 976-981 ◽  
Author(s):  
A. M. Remes ◽  
K. Majamaa-Voltti ◽  
M. Karppa ◽  
J. S. Moilanen ◽  
S. Uimonen ◽  
...  

1997 ◽  
Vol 150 ◽  
pp. S42
Author(s):  
Edward K. Wang ◽  
Ko-Pei Kao ◽  
Rong-Hong Hsieh ◽  
Ching-You Lu ◽  
Cheng-Yoong Pang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document