scholarly journals Expression of Cytochrome c3 from Desulfovibrio vulgaris in Plant Leaves Enhances Uranium Uptake and Tolerance of Tobacco

2021 ◽  
Vol 22 (23) ◽  
pp. 12622
Author(s):  
Denis V. Beliaev ◽  
Dmitry V. Tereshonok ◽  
Nina F. Lunkova ◽  
Ekaterina N. Baranova ◽  
Ekaterina S. Osipova ◽  
...  

Cytochrome c3 (uranyl reductase) from Desulfovibrio vulgaris can reduce uranium in bacterial cells and in cell-free systems. This gene was introduced in tobacco under control of the RbcS promoter, and the resulting transgenic plants accumulated uranium when grown on a uranyl ion containing medium. The uptaken uranium was detected by EM in chloroplasts. In the presence of uranyl ions in sublethal concentration, the transgenic plants grew phenotypically normal while the control plants’ development was impaired. The data on uranium oxidation state in the transgenic plants and the possible uses of uranium hyperaccumulation by plants for environmental cleanup are discussed.

2020 ◽  
Author(s):  
Vinicius Cruzeiro ◽  
Gustavo Troiano Feliciano ◽  
Adrian Roitberg

Coupled redox and pH-driven processes are at the core of many important biological mechanisms. As the distribution of protonation and redox states in a system is associated with the pH and redox potential of the solution, having efficient computational tools that can simulate under these conditions become very important. Such tools have the potential to provide information that complement and drive experiments. In previous publications we have presented the implementation of the constant pH and redox potential molecular dynamics (C(pH,E)MD) method in AMBER and we have shown how multidimensional replica exchange can be used to significantly enhance the convergence efficiency of our simulations. In the current work, after an improvement in our C(pH,E)MD approach that allows a given residue to be simultaneously pH- and redox-active, we have employed our methodologies to study five different systems of interest in the literature. We present results for: capped tyrosine dipeptide, two maquette systems containing one pH- and redox-active tyrosine (α3Y and peptide A), and two proteins that contain multiple heme groups (diheme cytochrome c from Rhodobacter sphaeroides and Desulfovibrio vulgaris Hildenborough cytochrome c3). We show that our results can provide new insights into previous theoretical and experimental findings by using a fully force field-based and GPUaccelerated approach, which allows the simulations to be executed with high computational performance.


2002 ◽  
Vol 68 (6) ◽  
pp. 3129-3132 ◽  
Author(s):  
Rayford B. Payne ◽  
Darren M. Gentry ◽  
Barbara J. Rapp-Giles ◽  
Laurence Casalot ◽  
Judy D. Wall

ABSTRACT Previous in vitro experiments with Desulfovibrio vulgaris strain Hildenborough demonstrated that extracts containing hydrogenase and cytochrome c 3 could reduce uranium(VI) to uranium(IV) with hydrogen as the electron donor. To test the involvement of these proteins in vivo, a cytochrome c 3 mutant of D. desulfuricans strain G20 was assayed and found to be able to reduce U(VI) with lactate or pyruvate as the electron donor at rates about one-half of those of the wild type. With electrons from hydrogen, the rate was more severely impaired. Cytochrome c 3 appears to be a part of the in vivo electron pathway to U(VI), but additional pathways from organic donors can apparently bypass this protein.


1987 ◽  
Vol 33 (11) ◽  
pp. 1006-1010 ◽  
Author(s):  
Gerrit Voordouw ◽  
Helen M. Kent ◽  
John R. Postgate

Cloned genes encoding cytochrome c3 and hydrogenase from Desulfovibrio vulgaris Hildenborough have been used to probe the genomes of 15 other desulfovibrios. The D. vulgaris strains Wandle and Brockhurst Hill cannot be distinguished from the Hildenborough strain by Southern hybridization using either probe, indicating similar genomes. Desulfovibrio vulgaris Groningen is completely different and lacks homologous cytochrome c3 and hydrogenase genes. The genomes of D. vulgaris ssp. oxamicus Monticello and D. desulfuricans strains El Agheila Z, Berre sol, and Canet 41 contain genes encoding a homologous but not identical periplasmic hydrogenase and cytochrome c3. Weak hybridization was observed with the cytochrome c3 gene probe for genomes of seven other sulfate-reducing bacteria, which reflects the known amino acid sequence divergence of cytochrome c3 in Desulfovibrio. The hydrogenase gene probe shows weak hybridization to the DNA from two strains of D. salexigens only, while the gene may be absent from D. vulgaris Groningen, two strains of D. africanus, D. thermophilus, D. gigas, and D. desulfuricans strains Norway and Teddington R. In desulfovibrios carrying cryptic plasmids the cytochrome c3 and hydrogenase genes are apparently chromosomal.


1989 ◽  
Vol 182 (1) ◽  
pp. 51-55 ◽  
Author(s):  
Hafeda BENOSMAN ◽  
Marcel ASSO ◽  
Patrick BERTRAND ◽  
Tatsuhiko YAGI ◽  
Jean-Pierre GAYDA

1994 ◽  
Vol 1187 (2) ◽  
pp. 232-235 ◽  
Author(s):  
D.L. Turner ◽  
C.A. Salgueiro ◽  
T. Catarino ◽  
J. LeGall ◽  
A.V. Xavier

Sign in / Sign up

Export Citation Format

Share Document