scholarly journals The lncRNAs at X Chromosome Inactivation Center: Not Just a Matter of Sex Dosage Compensation

2022 ◽  
Vol 23 (2) ◽  
pp. 611
Author(s):  
Chiara Siniscalchi ◽  
Armando Di Palo ◽  
Aniello Russo ◽  
Nicoletta Potenza

Non-coding RNAs (ncRNAs) constitute the majority of the transcriptome, as the result of pervasive transcription of the mammalian genome. Different RNA species, such as lncRNAs, miRNAs, circRNA, mRNAs, engage in regulatory networks based on their reciprocal interactions, often in a competitive manner, in a way denominated “competing endogenous RNA (ceRNA) networks” (“ceRNET”): miRNAs and other ncRNAs modulate each other, since miRNAs can regulate the expression of lncRNAs, which in turn regulate miRNAs, titrating their availability and thus competing with the binding to other RNA targets. The unbalancing of any network component can derail the entire regulatory circuit acting as a driving force for human diseases, thus assigning “new” functions to “old” molecules. This is the case of XIST, the lncRNA characterized in the early 1990s and well known as the essential molecule for X chromosome inactivation in mammalian females, thus preventing an imbalance of X-linked gene expression between females and males. Currently, literature concerning XIST biology is becoming dominated by miRNA associations and they are also gaining prominence for other lncRNAs produced by the X-inactivation center. This review discusses the available literature to explore possible novel functions related to ceRNA activity of lncRNAs produced by the X-inactivation center, beyond their role in dosage compensation, with prospective implications for emerging gender-biased functions and pathological mechanisms.

2009 ◽  
Vol 87 (5) ◽  
pp. 759-766 ◽  
Author(s):  
Jakub Minks ◽  
Carolyn J. Brown

X-chromosome inactivation is a fascinating epigenetic phenomenon that is initiated by expression of a noncoding (nc)RNA, XIST, and results in transcriptional silencing of 1 female X. The process requires a series of events that begins even before XIST expression, and culminates in an active and a silent X within the same nucleus. We will focus on the role that transgenic systems have served in the current understanding of the process of X-chromosome inactivation, both in the initial delineation of an active and inactive X, and in the function of the XIST RNA. X inactivation is strictly cis-limited; recent studies have revealed elements within the X-inactivation center, the region required for inactivation, that are critical for the initial regulation of Xist expression and chromosome pairing. It has been revealed that the X-inactivation center contains a remarkable compendium of cis-regulatory elements, ncRNAs, and trans-acting pairing regions. We review the functional componentry of the X-inactivation center and discuss experiments that helped to dissect the XIST/Xist RNA and its involvement in the establishment of facultative heterochromatin.


2015 ◽  
Vol 27 (1) ◽  
pp. 140
Author(s):  
J. Y. Hwang ◽  
J.-N. Oh ◽  
D.-K. Lee ◽  
C.-H. Park ◽  
C.-K. Lee

X-chromosome inactivation (XCI) is an epigenetically essential process for balancing dosage of X-linked genes between male and female eutherian. Importance of this complex and species-specific event has been highlighted recently in developmental and stem cell biology. However, the process has been confirmed only in restricted species, even though the species-specific studies are needed for comprehensive understanding of XCI in specific species. XCI is regulated by the various genes, many of which are coded on the X chromosome inactivation centre (XIC). Among the XIC-linked genes, especially non-coding RNA (ncRNA) like XIST, which is master gene for XCI, are known to regulate XIC. But the centre is not identified in various species. In this study, we identified XIC in pig and analysed the dosage differences of XIC-linked gene in porcine embryos. At first, the centre was searched in pig. The genomic length of the porcine XIC was similar to human XIC and the order and coding strand of the counterparts in pig XIC were same as the human XIC-linked genes. However, sequence comparison between human XIC-linked gene and its porcine counterpart showed that ncRNA around XIST were less conserved rather than protein-coding genes. This would be caused by rapid evolution of genomic region harboring ncRNA. The expression of XIC-linked genes was compared between male and female porcine embryonic fibroblast (PEF) to confirm that dosage compensation is completed in PEF. Most of the genes were not expressed sex-specifically, but two genes, XIST and an uncharacterized gene, LOC102165544, were expressed female preferentially in PEF. Interestingly, LOC102165544, which had low sequence homology with human JPX, was expressed about 2-fold higher in female PEF. This means that XIST and LOC102165544 are XCI-escaping genes. Among the XIC-linked genes, CHIC1, XIST, LOC102165544, and RLIM were stably expressed in embryonic stage, and XIST and LOC102165544 were up-regulated after morula formation. As XIST accumulation is a requisite for XCI initiation, expression levels of the 4 genes between male and female blastocysts were compared. Interestingly, expression levels of CHIC1 and RLIM were not different in male and female blastocysts. This means their dosage would be already compensated in porcine blastocyst. Additionally, to confirm loci of the 2 genes CHIC1 and RLIM harbor one of the inactive alleles in female blastocyst, the DNA methylation pattern was examined. One of the CHIC1 alleles was inactive but RLIM CpG site was hypo-methylated in female blastocyst. This would indicate that one of the RLIM alleles is transcriptionally inactivated by chromatin modification rather than by DNA methylation of the allele. Regulatory regions of XIST and LOC102165544 were demethylated in blastocyst and this showed XCI was not finished in porcine blastocyst. Conclusively, our results demonstrate the XCI already occurs in porcine blastocyst at least one gene but it is not completed.This work was supported by Next BioGreen21 program (PJ009493), Rural Development Administration, Republic of Korea.


Genomics ◽  
1999 ◽  
Vol 59 (2) ◽  
pp. 113-121 ◽  
Author(s):  
Barbara R. Migeon ◽  
Ethan Kazi ◽  
Camille Haisley-Royster ◽  
Jie Hu ◽  
Roger Reeves ◽  
...  

Development ◽  
2000 ◽  
Vol 127 (19) ◽  
pp. 4137-4145 ◽  
Author(s):  
I. Okamoto ◽  
S. Tan ◽  
N. Takagi

Using genetic and cytogenetic markers, we assessed early development and X-chromosome inactivation (X-inactivation) in XX mouse androgenones produced by pronuclear transfer. Contrary to the current view, XX androgenones are capable of surviving to embryonic day 7.5, achieving basically random X-inactivation in all tissues including those derived from the trophectoderm and primitive endoderm that are characterized by paternal X-activation in fertilized embryos. This finding supports the hypothesis that in fertilized female embryos, the maternal X chromosome remains active until the blastocyst stage because of a rigid imprint that prevents inactivation, whereas the paternal X chromosome is preferentially inactivated in extra-embryonic tissues owing to lack of such imprint. In spite of random X-inactivation in XX androgenones, FISH analyses revealed expression of stable Xist RNA from every X chromosome in XX and XY androgenonetic embryos from the four-cell to morula stage. Although the occurrence of inappropriate X-inactivation was further suggested by the finding that Xist continues ectopic expression in a proportion of cells from XX and XY androgenones at the blastocyst and the early egg cylinder stage, a replication banding study failed to provide positive evidence for inappropriate X-inactivation at E6. 5.


Development ◽  
1984 ◽  
Vol 84 (1) ◽  
pp. 309-329
Author(s):  
John D. West ◽  
Theodor Bücher ◽  
Ingrid M. Linke ◽  
Manfred Dünnwald

Mouse aggregation chimaeras were produced by aggregating C3H/HeH and C3H/HeHa—Pgk-1a/Ws embryos. At mid-term the proportions of the two cell populations in these conceptuses and the X-inactivation mosaic female progeny of C3H/HeH ♀ × C3H/HeHa—Pgk-1a/Ws ♂ matings were estimated using quantitative electrophoresis of phosphoglycerate kinase (PGK-1) allozymes. The percentage of PGK-1B was more variable in the foetus, amnion and yolk sac mesoderm of the chimaeras than in the corresponding tissues of the mosaic conceptuses. Positive correlations were found for the percentage of PGK-1B between these three primitive ectoderm tissues in both chimaeras and mosaics and between the two primitive endoderm tissues (yolk sac endoderm and parietal endoderm) of the chimaeras. There was no significant correlation between the primitive ectoderm and primitive endoderm tissues of the chimaeras. The results suggest that unequal allocation of cell populations to the primitive ectoderm and primitive endoderm considerably increases the variability among chimaeras but variation probably exists before this segregation occurs. The variation that arises before and at this allocation event is present before X-chromosome inactivation occurs in the primitive ectoderm lineage and explains why the proportions of the two cell populations are more variable among chimaeras than mosaics. Additional variation arises within the primitive ectoderm lineage, after X-inactivation. This variation may be greater in chimaeras than mosaics but the evidence is inconclusive. The results also have some bearing on the nature of the allocation of cells to the primitive ectoderm and primitive endoderm lineages and the timing of X-chromosome inactivation in the primitive ectoderm lineage.


Development ◽  
2001 ◽  
Vol 128 (8) ◽  
pp. 1275-1286 ◽  
Author(s):  
T. Sado ◽  
Z. Wang ◽  
H. Sasaki ◽  
E. Li

In mammals, X-chromosome inactivation is imprinted in the extra-embryonic lineages with paternal X chromosome being preferentially inactivated. In this study, we investigate the role of Tsix, the antisense transcript from the Xist locus, in regulation of Xist expression and X-inactivation. We show that Tsix is transcribed from two putative promoters and its transcripts are processed. Expression of Tsix is first detected in blastocysts and is imprinted with only the maternal allele transcribed. The imprinted expression of Tsix persists in the extra-embryonic tissues after implantation, but is erased in embryonic tissues. To investigate the function of Tsix in X-inactivation, we disrupted Tsix by insertion of an IRES(β)geo cassette in the second exon, which blocked transcripts from both promoters. While disruption of the paternal Tsix allele has no adverse effects on embryonic development, inheritance of a disrupted maternal allele results in ectopic Xist expression and early embryonic lethality, owing to inactivation of both X chromosomes in females and single X chromosome in males. Further, early developmental defects of female embryos with maternal transmission of Tsix mutation can be rescued by paternal inheritance of the Xist deletion. These results provide genetic evidence that Tsix plays a crucial role in maintaining Xist silencing in cis and in regulation of imprinted X-inactivation in the extra-embryonic tissues.


Sign in / Sign up

Export Citation Format

Share Document