scholarly journals Modelling of compressive strength of self-compacting concrete containing fly ash by gene expression programming

2020 ◽  
Vol 19 (2) ◽  
pp. 346-358
Author(s):  
Ibrahim O. DENEME
2021 ◽  
Vol 6 (12) ◽  
pp. 181
Author(s):  
Van-Ngoc Pham ◽  
Erwin Oh ◽  
Dominic E. L. Ong

The study aims to develop a reliable model using gene-expression programming (GEP) technique for estimating the unconfined compressive strength (UCS) of soil stabilization by cement and fly ash. The model considered the effects of several parameters, including the fly ash characteristics such as calcium oxide (CaO) content, CaO/SiO2 ratio, and loss of ignition. The research results show that the proposed model demonstrates superior performance with a high correlation coefficient (R > 0.955) and low errors. Therefore, the model could be confidently applied in practice for a variety of fly ash qualities. Besides, the parametric study was conducted to examine the effect of fly ash characteristics on the strength of soil stabilization. The study indicates that if the fly ash contains a high amount of calcium oxide, the strength of fly ash stabilized soil is significant. In addition, fly ash could be used in combination with cement to increase the strength of the mixture. A fly ash replacement ratio is suggested from 0.19 to 0.35, corresponding to the total binder used from 10% to 30%. The research findings could help engineers in optimizing the fly ash proportion and estimating the UCS of soil stabilization by cement and fly ash.


2021 ◽  
Vol 2021 ◽  
pp. 1-17 ◽  
Author(s):  
Mohsin Ali Khan ◽  
Shazim Ali Memon ◽  
Furqan Farooq ◽  
Muhammad Faisal Javed ◽  
Fahid Aslam ◽  
...  

Fly ash (FA) is a residual from thermal industries that has been effectively utilized in the production of FA-based geopolymer concrete (FGPC). To avoid time-consuming and costly experimental procedures, soft computing techniques, namely, random forest regression (RFR) and gene expression programming (GEP), are used in this study to develop an empirical model for the prediction of compressive strength of FGPC. A widespread, reliable, and consistent database of compressive strength of FGPC is set up via a comprehensive literature review. The database consists of 298 compressive strength data points. The influential parameters that are considered as input variables for modelling are curing temperature T , curing time t , age of the specimen A , the molarity of NaOH solution M , percent SiO2 solids to water ratio %   S / W in sodium silicate (Na2SiO3) solution, percent volume of total aggregate (   %   A G ), fine aggregate to the total aggregate ratio F / A G , sodium oxide (Na2O) to water ratio N / W in Na2SiO3 solution, alkali or activator to the FA ratio A L / F A , Na2SiO3 to NaOH ratio N s / N o , percent plasticizer ( %   P ), and extra water added as percent FA E W % . RFR is an ensemble algorithm and gives outburst performance as compared to GEP. However, GEP proposed an empirical expression that can be used to estimate the compressive strength of FGPC. The accuracy and performance of both models are evaluated via statistical error checks, and external validation is considered. The proposed GEP equation is used for sensitivity analysis and parametric study and then compared with nonlinear and linear regression expressions.


2018 ◽  
Vol 4 (4) ◽  
pp. 54
Author(s):  
Iis Nurjamilah ◽  
Abinhot Sihotang

ABSTRAKKajian karakteristik beton memadat sendiri yang menggunakan serat ijuk merupakan sebuah kajian yang dilakukan untuk mengetahui pengaruh penambahan serat ijuk terhadap karakteristik beton memadat sendiri (SCC). Beton memadat sendiri yang menggunakan serat ijuk (PFSCC) didesain memiliki campuran yang encer, bermutu tinggi (= 40 MPa) dan memiliki persentase kekuatan lentur yang lebih baik. PFSCC  didapatkan dari hasil pencampuran antara semen sebanyak 85%, fly ash 15%, superplastizicer 1,5%, serat ijuk 0%, 0,5%; 1%; 1,5%; 2% dan 3% dari berat binder (semen + fly ash), kadar air 190 kg/m3, agregat kasar 552,47 kg/m3 dan pasir 1.063 kg/m3. Semakin banyak persentase penambahan serat ijuk ke dalam campuran berdampak terhadap menurunnya workability beton segar. Penambahan serat ijuk yang paling baik adalah sebanyak 1%, penambahan tersebut dapat meningkatkan kekuatan tekan beton sebesar 13% dan lentur sebesar 1,8%.Kata kunci: beton memadat sendiri (SCC), beton berserat, beton memadat sendiri yang menggunakan serat ijuk (PFSCC), serat ijuk ABSTRACTThe study of characteristics self compacting concrete using palm fibers is a study conducted to determine the effect of adding palm fibers to characteristics of self compacting concrete (SCC). palm fibers self compacting concrete (PFSCC) is designed to have a dilute mixture, high strength (= 40 MPa), and have better precentage flexural strength. PFSCC was obtained from mixing of 85% cement, 15% fly ash, 1.5% superplastizicer, 0%, 0.5%, 1%, 1.5%, 2% and 3% palm fibers from the weight of binder  (cement + fly ash), water content 190 kg/m3, coarse aggregate 552.47 kg/m3 and sand 1,063 kg/m3. The more persentage palm fibers content added to the mixture makes workability of fresh concrete decreases. The best addition of palm fiber is 1%, this addition can increases the compressive strength 13% and flexural strength 1.8%.Keywords: self compacting concrete (SCC), fiber concrete, Palm fiber self compacting concrete (PFSCC), palm fiber


2014 ◽  
Vol 64 ◽  
pp. 261-269 ◽  
Author(s):  
Watcharapong Wongkeo ◽  
Pailyn Thongsanitgarn ◽  
Athipong Ngamjarurojana ◽  
Arnon Chaipanich

2012 ◽  
Vol 45 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Seyyed Mohammad Mousavi ◽  
Pejman Aminian ◽  
Amir Hossein Gandomi ◽  
Amir Hossein Alavi ◽  
Hamed Bolandi

Sign in / Sign up

Export Citation Format

Share Document