scholarly journals The Attraction of the Dung Beetle Anoplotrupes stercorosus (Coleoptera: Geotrupidae) to Volatiles from Vertebrate Cadavers

Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 476
Author(s):  
Sandra Weithmann ◽  
Christian von Hoermann ◽  
Thomas Schmitt ◽  
Sandra Steiger ◽  
Manfred Ayasse

During decomposition, vertebrate carrion emits volatile organic compounds to which insects and other scavengers are attracted. We have previously found that the dung beetle, Anoplotrupes stercorosus, is the most common dung beetle found on vertebrate cadavers. Our aim in this study was to identify volatile key compounds emitted from carrion and used by A. stercorosus to locate this nutritive resource. By collecting cadaveric volatiles and performing electroantennographic detection, we tested which compounds A. stercorosus perceived in the post-bloating decomposition stage. Receptors in the antennae of A. stercorosus responded to 24 volatiles in odor bouquets from post-bloating decay. Subsequently, we produced a synthetic cadaver odor bouquet consisting of six compounds (benzaldehyde, DMTS, 3-octanone, 6-methyl-5-hepten-2-ol, nonanal, dodecane) perceived by the beetles and used various blends to attract A. stercorosus in German forests. In field assays, these beetles were attracted to a blend of DMTS, 3-octanone, and benzaldehyde. Generalist feeding behavior might lead to the super-dominant occurrence of A. stercorosus in temperate European forests and have a potentially large impact on the exploitation and rapid turnover of temporally limited resources such as vertebrate cadavers.

Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 238 ◽  
Author(s):  
Clément Martin ◽  
Damien Minchilli ◽  
Frédéric Francis ◽  
François Verheggen

A cadaver is colonized by a wide diversity of necrophagous insects. It is well documented that Dipterans are attracted by the volatile organic compounds (VOCs) released by a corpse during the first minutes following death. Coleopterans are known to be attracted by highly decomposed cadavers, but have received less attention regarding the olfaction-based mechanisms underlying these interactions. In the present study, we impregnated gauzes with VOCs collected from each decomposition stage of dead rats: fresh, bloated, active, and advanced decay. We collected the VOCs released by the gauze and confirmed what was previously know from the literature: the decomposition stages are associated with contrasting chemical profiles. We exposed Dermestes frischii Kugelann (Coleoptera: Dermestidae) male and female antennae to the same gauzes and found that stronger electrical responses were recorded when using the smell of the advanced decay stage. Finally, we performed two choices behavioral assays. Females showed no preference for the four decomposition stages, while males were attracted by the smell associated with active and advanced decay stages. These results suggest that specific VOCs released by a decaying body guide necrophagous coleopterans to their feeding site. Whether D. frischii males release pheromones to attract females remains to be tested.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Vincenzo Di Ilio ◽  
Michael A Birkett ◽  
John A Pickett

AbstractAnimals use olfaction to detect developmentally significant volatile organic compounds (VOCs) in their local environment. As part of a wider study aiming to demonstrate that the olfactory responses of animals to VOCs can be modified through the creation of a drug-addicted status and association with a selected VOC, we investigated nicotine and tobacco smoke particulate (TSP) extract as possible addictive compounds for male German cockroaches, Blattella germanica (Linnaeus). In feeding experiments using an artificial food stimulus, food treated with TSP extract was preferred over untreated food. Surprisingly, nicotine, which was expected to be the most important addictive tobacco component, did not induce noticeable effects on cockroach behavior. Both TSP extract and nicotine were shown to be phagostimulants. Olfactometry assays that measured odor-mediated insect behavior demonstrated that male B. germanica did not choose TSP-extract-treated food even when attempts were made specifically to train them via this modality. These results support a hypothesis that B. germanica needs to consume TSP-containing food to show a clear preference for this stimulus and that gustatory mechanisms are involved due to compounds present in the TSP extract.


2014 ◽  
Vol 39 (5) ◽  
pp. 556-565 ◽  
Author(s):  
JAMIE R. STAVERT ◽  
BRADLEY A. DRAYTON ◽  
JACQUELINE R. BEGGS ◽  
ANNE C. GASKETT

Sign in / Sign up

Export Citation Format

Share Document