behavioral assays
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 60)

H-INDEX

17
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Alise R. Muok ◽  
Kurni Kurniyati ◽  
Davi R. Ortega ◽  
Flory Olsthoorn ◽  
Adam Sidi Mabrouk ◽  
...  

Pathogenic spirochetes can alter their morphologies and behaviors to infect and survive within their hosts. Previous reports demonstrate that the formation of so-called round bodies and biofilms, and chemotaxis are involved in spirochete pathogenesis. Here, in the spirochete Treponema denticola, we report a direct link between these cellular states that involves a new class of protein sensor (CheWS) with hitherto unclear function. Using cryo-EM methods, protein modeling, bioinformatics, genetics methods, and behavioral assays we demonstrate that spirochetes regulate these behaviors in response to the small molecule s-adenosylmethionine (SAM) via a SAM sensor that is anchored to chemotaxis arrays. CheWS influences chemotaxis, biofilm and round body formation under non-stressed conditions by a novel sporulation-like mechanism. Taken together, we establish an improved model for round body formation, we discovered a direct link between this SAM sensor and changes in cellular states, as well as characterized a new sensor class involved in chemotaxis.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 533-533
Author(s):  
Cara Hardy ◽  
Ramalakshmi Ramasamy ◽  
Dawn Rosenberg ◽  
Philip Scarpa ◽  
Xiangyou Hu ◽  
...  

Abstract Alzheimer’s disease (AD) is a devastating disorder primarily affecting older adults and is the most common neurodegenerative disease in the US. More than one in three AD patients experience AD-associated urinary dysfunction (ADUD), which directly contributes to their institutionalization. While ADUD has been clinically regarded as a result of poor cognitive control over urinary function, the physiology underlying loss of urinary control remains unknown. We hypothesize that amyloidosis in the CNS results in pathologic changes in urinary structure and function. Tg-APP/PS1DE9 mice were used before plaque deposition (4-6 months) and after plaque accumulation (8-10 months) and compared to WT littermates. Behavioral assays (open field testing and voiding spot assays) were performed to assess cortical function. Pressure-flow cystometry was conducted under urethane anesthesia to assess autonomic control of urinary function without cortical influence. Pharmacomyography of bladder strips was used to determine tissue-level changes in the absence of CNS input. In Tg-APP/PS1DE9 mice, plaque accumulation resulted in significant cystometric changes to voiding phase parameters, but not storage phase parameters. Pharmacologic studies showed decreased sensitivity to adrenergic stimulation without change in muscarinic sensitivity. Behavioral assays demonstrated significant differences between transgenic animals and WT in locomotion and voiding spot sizes. We interpret our data to support AD-related pathology of Aβ accumulation results in a distinct urinary phenotype in our model, analogous to the ADUD observed in AD patients. Establishing and verifying models of ADUD may improve the efficacy of treating ADUD and increase quality of life for patients and their caregivers.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Amanda Lesar ◽  
Javan Tahir ◽  
Jason Wolk ◽  
Marc Gershow

Associative learning allows animals to use past experience to predict future events. The circuits underlying memory formation support immediate and sustained changes in function, often in response to a single example. Larval Drosophila is a genetic model for memory formation that can be accessed at molecular, synaptic, cellular, and circuit levels, often simultaneously, but existing behavioral assays for larval learning and memory do not address individual animals, and it has been difficult to form long-lasting memories, especially those requiring synaptic reorganization. We demonstrate a new assay for learning and memory capable of tracking the changing preferences of individual larvae. We use this assay to explore how activation of a pair of reward neurons changes the response to the innately aversive gas carbon dioxide (CO2). We confirm that when coupled to CO2 presentation in appropriate temporal sequence, optogenetic reward reduces avoidance of CO2. We find that learning is switch-like: all-or-none and quantized in two states. Memories can be extinguished by repeated unrewarded exposure to CO2 but are stabilized against extinction by repeated training or overnight consolidation. Finally, we demonstrate long-lasting protein synthesis dependent and independent memory formation.


Author(s):  
Alisa A. Omelchenko ◽  
Ainul Huda ◽  
Allison N. Castaneda ◽  
Thomas J. Vaden ◽  
Lina Ni

AbstractDrosophila adult and larvae exhibit sophisticated behaviors that are widely used in development, synaptic transmission, sensory physiology, and learning and memory research. Many of these behaviors depend on locomotion, the ability of an animal to move. However, the statistical analysis of locomotion is not trivial. Here we use an open-source Fiji plugin TrackMate to track the locomotion of Drosophila adults and larvae. We build optimal experimental setups to rapidly process recordings by Fiji and analyze by TrackMate. We also provide tips for analyzing non-optimal recordings. TrackMate extracts the X and Y positions of an animal on each frame of an image sequence or a video. This information allows for generating moving trajectories, calculating moving distances, and determining preference indices in two-choice assays. Notably, this free-cost analysis method does not require programming skills.Summary statementThis study uses an open-source Fiji plugin TrackMate to computationally analyze Drosophila adult and larval behavioral assays, which does not require programming skills.


2021 ◽  
Author(s):  
Yijie Geng ◽  
Randall T. Peterson

SUMMARYAlthough some pharmacological agents are known to alter social behaviors, precise description and quantification of such effects have proven difficult. The complexity of brain functions regulating sociality makes it challenging to predict drug effects on social behavior without testing in live animals, and most existing behavioral assays are low-throughput and provide only unidimensional readouts of social function. To achieve richer characterization of drug effects on sociality, we developed a scalable social behavioral assay for zebrafish named ZeChat based on unsupervised deep learning. High-dimensional and dynamic social behavioral phenotypes are automatically classified using this method. By screening a neuroactive compound library, we found that different classes of chemicals evoke distinct patterns of social behavioral fingerprints. By examining these patterns, we discovered that dopamine D3 agonists possess a social stimulative effect on zebrafish. The D3 agonists pramipexole, piribedil, and 7-hydroxy-DPAT-HBr rescued social deficits in a valproic acid-induced zebrafish autism model. The ZeChat platform provides a promising approach for dissecting the pharmacology of social behavior and discovering novel social-modulatory compounds.


Author(s):  
Fengfang Wu ◽  
Yifeng Huang ◽  
Guifang Wei ◽  
Zhiwei Huang ◽  
Congwen Shi ◽  
...  

Although the connection between heat shock protein 70 (HSP70) and vestibular migraine is not clear, HSP70 is neuroprotective in other scenarios. This study aimed to investigate the potential of exogenous HSP70 for treating migraine-like symptoms in a mouse model of nitroglycerin (NTG) induced migraine. HSP70 levels were assessed in patients with vestibular migraine and healthy individuals by ELISA. Migraine was induced in mice by NTG and HSP70 expression was examined in the trigeminal nucleus caudalis (TNC) tissue of mice treated with NTG and NTG together with exogenous HSP70. The effects of exogenous HSP70 on migraine-like symptoms were assessed through behavioral assays. Finally, the impact of HSP70 on oxidative stress and NF-κB signaling in migraine mice was investigated. Serum HSP70 in patients with vestibular migraine was significantly lower than that of healthy individuals. NTG administration significantly suppressed HSP70 expression in mouse TNC tissue which were reversed by exogenous HSP70. HSP70 alleviated NTG-induced mechanical hypersensitivity, light aversion and anxiety-like behavior. Finally, exogenous HSP70 suppressed NTG-induced oxidative stress and NF-κB signaling. Our study suggests that exogenous HSP70 may be a potential therapy for alleviating migraine symptoms and our promising finding warrants further investigation of HSP70 for clinical application.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Enrico Lanza ◽  
Martina Di Rocco ◽  
Silvia Schwartz ◽  
Davide Caprini ◽  
Edoardo Milanetti ◽  
...  

AbstractChemosensory receptors play a crucial role in distinguishing the wide range of volatile/soluble molecules by binding them with high accuracy. Chemosensation is the main sensory modality in organisms lacking long-range sensory mechanisms like vision/hearing. Despite its low number of sensory neurons, the nematode Caenorhabditis elegans possesses several chemosensory receptors, allowing it to detect about as many odorants as mammals. Here, we show that C. elegans displays attraction towards urine samples of women with breast cancer, avoiding control ones. Behavioral assays on animals lacking AWC sensory neurons demonstrate the relevance of these neurons in sensing cancer odorants: calcium imaging on AWC increases the accuracy of the discrimination (97.22%). Also, chemotaxis assays on animals lacking GPCRs expressed in AWC allow to identify receptors involved in binding cancer metabolites, suggesting that an alteration of a few metabolites is sufficient for the cancer discriminating behavior of C. elegans, which may help identify a fundamental fingerprint of breast cancer.


2021 ◽  
Author(s):  
Stela P. Petkova ◽  
Jessica D. Duis ◽  
Jill L LYNN Silverman

Angelman Syndrome (AS) is a genetic neurodevelopmental disorder characterized by developmental delay, lack of speech, seizures, intellectual disability, and walking and balance disorders. Recently, motor ability became an interesting outcome measure in AS, as it is broad including ataxia, hypotonia, delayed and abnormal walking and postural movements and affects nearly every individual with AS. We predict that gait presents a strong opportunity for rigorous, reliable, and quantitative metrics with direct translation to evaluate pharmacological, dietary, and genetic therapies. Numerous motoric deficits have been identified clinically. In this study, we used an innovative, automated gait analysis as well as gold standard motor behavioral assays to further delineate components of motor, coordination, balance, and gait impairments in an AS mouse model across development. Our study demonstrated marked global motoric deficits in AS mice, corroborating many previous reports. Uniquely, this is the first report of nuanced and pertinent aberrations in quantitative spatial and temporal components of gait between AS and wildtype littermate controls, that are analogous in AS individuals. These metrics were followed longitudinally to observe the progression of maladaptive gait in AS, a clinical phenotype. This has not been reported previously and contributes a substantial novel metric for therapeutic development. Taken together, these findings demonstrate the robust translational value in the study of nuanced motor outcomes, i.e., gait, for AS, as well as similar genetic syndromes, in the endeavor of therapeutic screening.


2021 ◽  
Author(s):  
Michael F Priest ◽  
Sara N Freda ◽  
Deanna Badong ◽  
Vasin Dumrongprechachan ◽  
Yevgenia Kozorovitskiy

Many neuronal populations that release fast-acting excitatory and inhibitory neurotransmitters in the brain also contain slower acting neuropeptides. These facultative peptidergic cell types are common, but it remains uncertain whether obligate peptidergic neurons exist. Our fluorescence in situ hybridization, genetically-targeted electron microscopy, and electrophysiological characterization data strongly suggest that neurons of the non-cholinergic, centrally-projecting Edinger-Westphal nucleus in mice are fundamentally obligately peptidergic. We further show, using fiber photometry, monosynaptic retrograde tracing, anterograde projection mapping, and a battery of behavioral assays, that this peptidergic population both promotes fear responses and analgesia and activates in response to loss of motor control and pain. Together, these findings elucidate an integrative, ethologically relevant function for the Edinger-Westphal nucleus and functionally align the nucleus with the periaqueductal gray, where it resides. This work advances our understanding of the peptidergic modulation of fear and provides a framework for future investigations of putative obligate peptidergic systems.


Sign in / Sign up

Export Citation Format

Share Document