scholarly journals An In-Situ Assessment of Wood-in-Service Using Microwave Technologies, with a Focus on Assessing Hardwood Power Poles

Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 568
Author(s):  
Graham Brodie ◽  
Deepan Babu Thanigasalam ◽  
Peter Farrell ◽  
Allison Kealy ◽  
John R. J. French ◽  
...  

Wooden power poles and their ongoing inspection represent a significant investment for most electrical power utilities. This study explored the potential for using microwave fields to non-invasively assess the state of hardwood power poles in a field experiment. Two strategies were assessed: 2.4 GHz microwave field transmission through the pole; and mutual coupling between antennae using a 10.525 GHz radar module applied to the surface of the pole. Both systems distinguished between sound hardwood poles and those which were compromised by decay and subterranean termite attack and infestation.

PERENNIAL ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 33
Author(s):  
Astuti Arif ◽  
. Syahidah ◽  
Sitti Nuraeni

Fungi have a great diversity and wide distribution at the world. It can be used as the alternative technology for controlling of subterranean termite attack, particularly genus Coptotermes knowned as the wooden destructive organism, by using entomophatogenic fungi. For the purpose of the study, several isolate sources were taken from some locations. The results show that eight numbers of pathogenic fungi was founded by screening and identification of fungi taken from 19 numbers of isolate sources. The pathogenic fungi were Beauveria sp., Penicillium brevicompactum, P. rubrum, Paecilomyces fulvus, Fusarium verticolloides, Pythium sp., and Aspergillus sp. Key words: Jamur entomopatogen, Coptotermes sp.


2021 ◽  
Author(s):  
Islam M M. El-Sewify ◽  
Mostafa M.H. Khalil

In this report, we employ simple, fast and in-situ assessment method for sensing and uptake of copper in wastewater. Monitoring and uptake of copper ions concentration with a highly selective,...


2020 ◽  
Vol 66 (1) ◽  
Author(s):  
Yusuf Sudo Hadi ◽  
Muh Yusram Massijaya ◽  
Dodi Nandika ◽  
Wa Ode Muliastuty Arsyad ◽  
Imam Busyra Abdillah ◽  
...  

Abstract Smoke treatment can be used to enhance wood resistance to subterranean termite attack. In this study, kesambi (Schleichera oleosa) wood was pyrolyzed to produce charcoal. The smoke produced as a by-product of pyrolysis was used to treat sengon (Falcataria moluccana), jabon (Anthocephalus cadamba), mangium (Acacia mangium), and pine (Pinus merkusii) wood samples for 1, 2, or 3 weeks. Following the smoke treatment, the wood specimens were exposed to subterranean termites (Coptotermes curvignathus Holmgren) according to the Indonesian standard 7207-2014 in a laboratory. The color change caused by smoke treatment was observed, and chemical analysis of smoke was also done. The results showed that chemical compounds of kesambi smoke predominantly consisted of acetic acid, phenol, ketones, amines, and benzene. The color of smoked wood became darker, less yellow, and a little redder, while a longer smoking period produced a darker color which was more resistant to termite attack. Smoke treatment enhanced the resistance of wood to subterranean termite attack, and the resistance levels were not significantly different based on the duration of the smoke treatment.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Adnan Kadić ◽  
Anikó Várnai ◽  
Vincent G. H. Eijsink ◽  
Svein Jarle Horn ◽  
Gunnar Lidén

Abstract Background Biochemical conversion of lignocellulosic biomass to simple sugars at commercial scale is hampered by the high cost of saccharifying enzymes. Lytic polysaccharide monooxygenases (LPMOs) may hold the key to overcome economic barriers. Recent studies have shown that controlled activation of LPMOs by a continuous H2O2 supply can boost saccharification yields, while overdosing H2O2 may lead to enzyme inactivation and reduce overall sugar yields. While following LPMO action by ex situ analysis of LPMO products confirms enzyme inactivation, currently no preventive measures are available to intervene before complete inactivation. Results Here, we carried out enzymatic saccharification of the model cellulose Avicel with an LPMO-containing enzyme preparation (Cellic CTec3) and H2O2 feed at 1 L bioreactor scale and followed the oxidation–reduction potential and H2O2 concentration in situ with corresponding electrode probes. The rate of oxidation of the reductant as well as the estimation of the amount of H2O2 consumed by LPMOs indicate that, in addition to oxidative depolymerization of cellulose, LPMOs consume H2O2 in a futile non-catalytic cycle, and that inactivation of LPMOs happens gradually and starts long before the accumulation of LPMO-generated oxidative products comes to a halt. Conclusion Our results indicate that, in this model system, the collapse of the LPMO-catalyzed reaction may be predicted by the rate of oxidation of the reductant, the accumulation of H2O2 in the reactor or, indirectly, by a clear increase in the oxidation–reduction potential. Being able to monitor the state of the LPMO activity in situ may help maximizing the benefit of LPMO action during saccharification. Overcoming enzyme inactivation could allow improving overall saccharification yields beyond the state of the art while lowering LPMO and, potentially, cellulase loads, both of which would have beneficial consequences on process economics.


Sign in / Sign up

Export Citation Format

Share Document