scholarly journals Prior Experience with Food Reward Influences the Behavioral Responses of the Honeybee Apis mellifera and the Bumblebee Bombus lantschouensis to Tomato Floral Scent

Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 884
Author(s):  
Hong Zhang ◽  
Shuang Shan ◽  
Shaohua Gu ◽  
Xinzheng Huang ◽  
Zibo Li ◽  
...  

Bee responses to floral scent are usually influenced by both innate biases and prior experience. Honeybees are less attracted than bumblebees to tomato flowers. However, little is known about how tomato floral scent regulates the foraging behaviors of honeybees and bumblebees. In this study, the foraging behaviors of the honeybee Apis mellifera and the bumblebee Bombus lantschouensis on tomato flowers in greenhouses were investigated. Whether the two bee species exhibit different responses to tomato floral scent and how innate biases and prior experience influence bee choice behavior were examined. In the greenhouses, honeybees failed to collect pollen from tomato flowers, and their foraging activities decreased significantly over days. Additionally, neither naïve honeybees nor naïve bumblebees showed a preference for tomato floral scent in a Y-tube olfactometer. However, foraging experience in the tomato greenhouses helped bumblebees develop a strong preference for the scent, whereas honeybees with foraging experience continued to show aversion to tomato floral scent. After learning to associate tomato floral scent with a sugar reward in proboscis extension response (PER) assays, both bee species exhibited a preference for tomato floral scent in Y-tube olfactometers. The findings indicated that prior experience with a food reward strongly influenced bee preference for tomato floral scent.

2018 ◽  
Vol 65 (4) ◽  
pp. 457-465 ◽  
Author(s):  
Scarlett R Howard ◽  
Mani Shrestha ◽  
Juergen Schramme ◽  
Jair E Garcia ◽  
Aurore Avarguès-Weber ◽  
...  

AbstractPlant–pollinator interactions have a fundamental influence on flower evolution. Flower color signals are frequently tuned to the visual capabilities of important pollinators such as either bees or birds, but far less is known about whether flower shape influences the choices of pollinators. We tested European honeybee Apis mellifera preferences using novel achromatic (gray-scale) images of 12 insect-pollinated and 12 bird-pollinated native Australian flowers in Germany; thus, avoiding influences of color, odor, or prior experience. Independent bees were tested with a number of parameterized images specifically designed to assess preferences for size, shape, brightness, or the number of flower-like shapes present in an image. We show that honeybees have a preference for visiting images of insect-pollinated flowers and such a preference is most-likely mediated by holistic information rather than by individual image parameters. Our results indicate angiosperms have evolved flower shapes which influence the choice behavior of important pollinators, and thus suggest spatial achromatic flower properties are an important part of visual signaling for plant–pollinator interactions.


Sociobiology ◽  
2017 ◽  
Vol 64 (2) ◽  
pp. 174 ◽  
Author(s):  
Zhiguo Li ◽  
Meng Li ◽  
Jingnan Huang ◽  
Changsheng Ma ◽  
Linchen Xiao ◽  
...  

Chlorpyrifos is a widely used organophosphorus insecticide. The acute oral 24 h median lethal dose (LD50) value of chlorpyrifos in Apis mellifera and in Apis cerana was estimated to assess differential acute chlorpyrifos toxicity in the two bee species. The LD50 values of chlorpyrifos in A. mellifera and in A. cerana are 103.4 ng/bee and 81.8 ng/bee, respectively, which suggests A. cerana bees are slightly more sensitive than A. mellifera bees to the toxicity of chlorpyrifos. Doses half the acute LD50 of chlorpyrifos were selected to study behavioral changes in the two bee species using proboscis extension response assay. A. mellifera foragers treated with chlorpyrifos showed significantly lower response to the 10% sucrose solution compared to control bees after 2, 24 and 48 h. Chlorpyrifos significantly impaired the olfactory learning abilities and 2 h memory retention of forager bees regardless of honey bee species, which may affect the foraging success of bees exposed to chlorpyrifos.


Author(s):  
Kiri Li N. Stauch ◽  
Harrington Wells ◽  
Charles I. Abramson

Previous research looking at expectancy in animals has used various experimental designs focusing on appetitive and avoidance behaviors. In this study, honey bees (Apis mellifera) were tested ina series of three proboscis extension response (PER) experiments to determine to what degree honey bees’ form a cognitive-representation of an unconditioned stimulus (US). Tthe first experiment, bees were presented with either a 2 sec. sucrose US or 2 sec. honey US appetitive reward and the proboscis-extension duration was measured under each scenario. The PER duration was longer for the honey US even though each US was presented for just 2 sec. Honey bees in the second experiment were tested during extinction trials on a conditioned stimulus (CS) of cinnamon or lavender that was paired with either the sucrose US or honey US in the acquisition trials. The proportion of bees showing the PER response to the CS was recorded for each extinction trial for each US scenario, as was the duration of the proboscis extension for each bee. Neither measure differed between the honey US and sucrose US scenarios, In experiment three, bees were presented with a cinnamon or lavender CS paired with either honey US or sucrose US in a set of acquisition trials, but here the US was not given until after the proboscis was retracted. The PER duration after the CS, and again subsequent after the US, were recorded. While the PER duration after the US was longer for honey, the PER duration after the CS did not differ between honey US and sucrose US.


2005 ◽  
Vol 2 (1) ◽  
pp. 98-100 ◽  
Author(s):  
Mariana Gil ◽  
Rodrigo J De Marco

Early studies indicate that Apis mellifera bees learn nectar odours within their colonies. This form of olfactory learning, however, has not been analysed by measuring well-quantifiable learning performances and the question remains whether it constitutes a ‘robust’ form of learning. Hence, we asked whether bees acquire long-term olfactory memories within the colony. To this end, we used the bee proboscis extension response. We found that within-the-nest bees do indeed associate the odour (as the conditioned stimulus) with the sugar (as the unconditioned stimulus) present in the incoming nectar, and that the distribution of scented nectar within the colony allows them to establish long-term olfactory memories. This finding is discussed in the context of efficient foraging.


2020 ◽  
Vol 20 (6) ◽  
Author(s):  
Heather Christine Bell ◽  
Corina N Montgomery ◽  
Jaime E Benavides ◽  
James C Nieh

Abstract The health of insect pollinators, particularly the honey bee, Apis mellifera (Linnaeus, 1758), is a major concern for agriculture and ecosystem health. In response to mounting evidence supporting the detrimental effects of neonicotinoid pesticides on pollinators, a novel ‘bee safe’ butenolide compound, flupyradifurone (FPF) has been registered for use in agricultural use. Although FPF is not a neonicotinoid, like neonicotinoids, it is an excitotoxic nicotinic acetylcholine receptor agonist. In addition, A. mellifera faces threats from pathogens, such as the microsporidian endoparasite, Nosema ceranae (Fries et al. 1996). We therefore sought 1) to increase our understanding of the potential effects of FPF on honey bees by focusing on a crucial behavior, the ability to learn and remember an odor associated with a food reward, and 2) to test for a potential synergistic effect on such learning by exposure to FPF and infection with N. ceranae. We found little evidence that FPF significantly alters learning and memory at short-term field-realistic doses. However, at high doses and at chronic, field-realistic exposure, FPF did reduce learning and memory in an olfactory conditioning task. Infection with N. ceranae also reduced learning, but there was no synergy (no significant interaction) between N. ceranae and exposure to FPF. These results suggest the importance of continued studies on the chronic effects of FPF.


Honey Bees ◽  
2002 ◽  
pp. 67-84 ◽  
Author(s):  
M Pham-Del√®gue ◽  
A Decourtye

Sign in / Sign up

Export Citation Format

Share Document