scholarly journals Pollinators on Cowpea Vigna unguiculata: Implications for Intercropping to Enhance Biodiversity

Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Beatrice N. Dingha ◽  
Louis E. Jackai ◽  
Barbara A. Amoah ◽  
Clement Akotsen-Mensah

Pollinators are on the decline and loss of flower resources play a major role. This raises concerns regarding production of insect-pollinated crops and therefore food security. There is urgency to mitigate the decline through creation of farming systems that encourage flower-rich habitats. Cowpea is a crop that produces pollen and nectar attractive to pollinators. Twenty-four cowpea varieties were planted, and the number of pollinators were counted using three sampling methods: pan traps, sticky traps, and direct visual counts. Five pollinator types (honey bees, bumble bees, carpenter bees, wasps, and butterflies and moths), 11 and 16 pollinator families were recorded from direct visual counts, pan and sticky traps, respectively. Pollinator distribution varied significantly among varieties and sampling methods, with highest number on Penny Rile (546.0 ± 38.6) and lowest (214.8 ± 29.2) in Iron and Clay. Sticky traps accounted for 45%, direct visual counts (31%), and pan traps (23%) of pollinators. Pollinators captured by pan traps were more diverse than the other methods. The relationship between number of pollinators and number of flowers was significant (r2 = 0.3; p = 0.009). Cowpea can increase resources for pollinators and could be used to improve pollinator abundance and diversity in different farming systems.

2021 ◽  
Vol 13 (17) ◽  
pp. 9612
Author(s):  
Beatrice N. Dingha ◽  
Paul C. Omaliko ◽  
Barbara A. Amoah ◽  
Louis E. Jackai ◽  
Deepak Shrestha

Production of pollinator-dependent crops (PDCs) is increasing. However, pollinators are declining partly due to loss of floral resources. There is urgency to mitigate this decline and the potential risks to the production of PDCs and food security. One way is by promoting farming systems that enhance flower-rich habitats. In a two-year study, Pinkeye Purple Hull and Whippoorwill cowpea varieties attractive to pollinators were intercropped with three PDCs (squash, okra, and watermelon). We evaluated whether cowpea intercrop increases the abundance and diversity of pollinators, other beneficial insects, and crop yield, and decreases the abundance of the brown marmorated stink bug (BMSB). Diverse pollinators were recorded in both years for a total of 80,379, representing seven pollinator families (Andrenidae, Apidae, Crabronidae, Formicidae, Halictidae, Tachinidae, and Vespidae) captured in pan traps, six families (Apidae, Crabronidae, Halictidae, Pyralidae, Tachinidae, and Vespidae) from sticky traps, and five pollinator types (bumble bees, carpenter bees, honeybees, butterflies and moths, and wasps) through direct visual count. Pollinator abundance and diversity was highest on the cowpea-intercropped treatments than controls. PDCs intercropped with cowpea recorded more beneficial insects than BMSB. Okra, squash, and watermelon intercrops produced 7%, 27%, and 54% more fruits than the control, respectively. Our findings indicate that intercropping cowpeas with PDCs attracted more and diverse pollinators and resulted in increased crop yield. However, to optimize pollination, factors such as planting dates to synchronize the flowering of both cowpeas and PDCs should be taken into consideration.


1984 ◽  
Vol 116 (7) ◽  
pp. 965-974 ◽  
Author(s):  
Kenna E. MacKenzie ◽  
Mark L. Winston

AbstractNative bee pollinators were collected and observed on cultivated blueberry, raspberry, and cranberry and on natural non-cultivated plants such as blackberry, buttercup, fireweed, thistle, and hairy cat's ear. Higher abundance and diversity of native bees were found on natural vegetation than on berry crops. Native bee populations on berry crops increased from 1981 to 1982, although diversity was similar. Native bees were not abundant enough to ensure adequate pollination of berry crops, and therefore, the use of managed honey bees is advisable. Pesticide impact, competition with managed honey bees, and habitat destruction have probably decreased native bee populations in agricultural areas of the Fraser Valley.The use of a standard measure of native pollinator abundance, bees observed/min/m2, is recommended for future studies of this kind.


2011 ◽  
Vol 143 (3) ◽  
pp. 279-299 ◽  
Author(s):  
M.H. Richards ◽  
A. Rutgers-Kelly ◽  
J. Gibbs ◽  
J.L. Vickruck ◽  
S.M. Rehan ◽  
...  

AbstractThe bee fauna (Hymenoptera: Apoidea) of the Niagara Peninsula, at the eastern end of the Carolinian Zone in Ontario, Canada, is poorly known. From April to October 2003, we studied bee abundance and diversity in set-aside grasslands at Brock University and the Glenridge Quarry Naturalization Site in southern St. Catharines, Ontario. Using three sampling methods (pan traps, sweep nets, and aerial nets), we collected and identified 15 733 specimens of 124 species and morphospecies representing all bee families, except Melittidae, found in North America. Abundance-based diversity estimators suggested bee species richness to be as high as 148 species. There were three seasonal peaks in bee abundance (early spring, late spring, and mid-summer) with a lull in activity shortly after the summer solstice. Several indicators suggested substantial impacts of disturbance on the Niagara bee community, including evidence of high dominance by the most abundant species. Comparison of the sampling methods indicated considerable catch variation among taxa; Halictidae and Apidae were dominant in pan trap samples and in sweep–aerial net samples, respectively. However, bee abundances in pan traps and sweep nets were highly correlated, suggesting that both methods fairly sample local bee abundances.


Insects ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 405
Author(s):  
Harper McMinn-Sauder ◽  
Rodney Richardson ◽  
Tyler Eaton ◽  
Mike Smith ◽  
Reed Johnson

A present goal of the Conservation Reserve Program (CRP) is to manage land in agricultural landscapes to increase pollinator abundance and diversity. CP42, or the pollinator seed mix, is planted and managed to support foraging pollinators with blooming flowers present at all points in the foraging season. This high-quality habitat provides an excellent opportunity to study honey bee nutrition and determine whether honey bees located near CRP sites use known resources included in planting seed mixes. This study aims to highlight the primary sources of honey bee forage in the northern Midwest as well as to assess honey bee utilization of the floral resources provided by the pollinator seed mix used for CRP plantings. We received pollen samples collected using pollen traps by beekeepers in Ohio, South Dakota, Indiana, Illinois, and Michigan. Metabarcoding methods were used to identify and quantify pollen collected at different points in the season. The results indicate that honey bees frequently used major mass flowering resources such as Glycine, Trifolium, and Symphiotrichum throughout the season. In addition, flowers included in the CRP pollinator seed mix were used modestly. These results have implications for pollinator seed mix design.


2019 ◽  
Vol 51 (1) ◽  
Author(s):  
Evert W. Brascamp ◽  
Piter Bijma

Abstract Background In honey bees, observations are usually made on colonies. The phenotype of a colony is affected by the average breeding value for the worker effect of the thousands of workers in the colony (the worker group) and by the breeding value for the queen effect of the queen of the colony. Because the worker group consists of multiple individuals, interpretation of the variance components and heritabilities of phenotypes observed on the colony and of the accuracy of selection is not straightforward. The additive genetic variance among worker groups depends on the additive genetic relationship between the drone-producing queens (DPQ) that produce the drones that mate with the queen. Results Here, we clarify how the relatedness between DPQ affects phenotypic variance, heritability and accuracy of the estimated breeding values of replacement queens. Second, we use simulation to investigate the effect of assumptions about the relatedness between DPQ in the base population on estimates of genetic parameters. Relatedness between DPQ in the base generation may differ considerably between populations because of their history. Conclusions Our results show that estimates of (co)variance components and derived genetic parameters were seriously biased (25% too high or too low) when assumptions on the relationship between DPQ in the statistical analysis did not agree with reality.


Sociobiology ◽  
2018 ◽  
Vol 65 (1) ◽  
pp. 88 ◽  
Author(s):  
Rudolf H Scheffrahn ◽  
James A Chase ◽  
John R. Mangold ◽  
Henry H Hochmair

The termite family Kalotermitidae constitutes a wood-nesting termite family that accounts for about 15% of all extant termite species. In recent decades, field studies have been carried out to assess termite diversity in various wooded habitats and geographic locations. Three sampling methods have been favored expert, transect, and alate light-trap surveys. Expert collecting is not spatially quantifiable but relies on field personnel to recognize and sample termite niches. The transect method aims to standardize and quantify termite abundance and diversity. Light trapping is a passive method for sampling nocturnal alate flights. We compared our expert survey results and results of published sampling methods for their proportional yields of kalotermitid versus non-kalotermitid encounters. Using an odds ratio statistic, we found that worldwide, there is about a 50.6-fold greater likelihood of encountering a kalotermitid sample versus a non-kalotermitid using the expert survey method and a 15.3-fold greater likelihood using alate trapping than using the transect method. There is about a 3.3 -fold greater likelihood of collecting a kalotermitid specimen versus a non-kalotermitid sample using the expert survey method than using the alate trap method. Transect studies in which only termite species diversity was reported gave similar low Kalotermitidae yields. We propose that multiple biases in sampling methodology include tools, time constraints, habitat type, geographical location, topographical conditions, and human traits account for the divergent outcomes in sampling the abundance and diversity of Kalotermitidae compared to other termite families.


2018 ◽  
Vol 66 (1) ◽  
pp. 151-161
Author(s):  
Brigitta Zana ◽  
Gábor Kemenesi ◽  
Péter Urbán ◽  
Fanni Földes ◽  
Tamás Görföl ◽  
...  

The predominance of dietary viruses in bat guano samples had been described recently, suggesting a new opportunity to survey the prevalence and to detect new viruses of arthropods or even plant-infecting viruses circulating locally in the ecosystem. Here we describe the diversity of viruses belonging to the order Picornavirales in Hungarian insectivorous bat guano samples. The metagenomic analysis conducted on our samples has revealed the significant predominance of aphid lethal paralysis virus (ALPV) and Big Sioux River virus (BSRV) in Hungary for the first time. Phylogenetic analysis was used to clarify the relationship to previously identified ALPV strains infecting honey bees, showing that our strain possesses a close genetic relationship with the strains that have already been described as pathogenic to honey bees. Furthermore, studies have previously confirmed the ability of these viruses to replicate in adult honey bees; however, no signs related to these viruses have been revealed yet. With the identification of two recently described possibly honey bee infecting viruses for the first time in Hungary, our results might have importance for the health conditions of Hungarian honey bee colonies in the future.


2012 ◽  
Vol 58 (No. 12) ◽  
pp. 560-568 ◽  
Author(s):  
E.W. Mbuthia ◽  
J.H. Shariff ◽  
A. Raman ◽  
D.S. Hodgkins ◽  
H.I. Nicol ◽  
...  

Shelterbelts are important for the sustainability of agriculture because they provide a variety of benefits to farmers and the society. Several published papers demonstrate that integration of shelterbelts with agroecosystems offers positive outcomes, such as better yield, more congenial microclimate, and greater organic matter levels. Nonetheless, soil biological diversity, the driver of greater organic matter levels, has not been convincingly tested and verified yet. In addressing this gap, we measured abundance and diversity of populations of arthropods and fungi in three<br />11-year old shelterbelts integrated with pasture to determine whether a correlation exists between the abundance of and diversity in populations of arthropods and fungi in two seasons: late autumn-early winter (May&ndash;June 2011) and late winter-early spring (August&ndash;September 2011). Litter from the soil surface and soil from two depths were sampled at increasing distance from the midpoint of shelterbelts for the extraction of arthropods and isolation culturing of fungi. The relationship among distance, depth and biodiversity of different groups of arthropods and fungi was analysed using linear regression. We found that over both seasons arthropod abundance in the litter and soil declined with increasing distance from the midpoint of the shelterbelts, and with soil depth. However, fungi abundance in either season was not affected by proximity to the shelterbelt but increased with greater soil depth. Distance from the shelterbelt midpoints did not bear an impact on the diversity richness of both arthropods and fungi.


Sign in / Sign up

Export Citation Format

Share Document