scholarly journals Sublethal Effects of Imidacloprid on Fecundity, Apoptosis and Virus Transmission in the Small Brown Planthopper Laodelphax striatellus

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1131
Author(s):  
Yuanyuan Zhang ◽  
Gang Xu ◽  
Yu Jiang ◽  
Chao Ma ◽  
Guoqing Yang

Laodelphax striatellus damages plants directly through sucking plant sap and indirectly as a vector of rice stripe virus (RSV), resulting in serious losses of rice yield. It is one of the most destructive insects of rice in East Asia. Insecticides are primarily used for pest management, but the sublethal concentrations of insecticides may benefit several insects. The present research attempted to explore the effects of sublethal concentrations of imidacloprid on the fecundity, apoptosis and RSV transmission in the viruliferous SBPH. The results showed that the fecundity of SBPH was significantly increased after treatment with the LC10 dose of imidacloprid, while the LC30 dose of imidacloprid reduced the fecundity compared with the control. To further investigate the underlying mechanism of increased fecundity after exposure to the LC10 dose of imidacloprid, we examined the expression levels of vitellogenin (Vg), Vg receptor (VgR) and caspases in the ovaries of SBPH, and observed the apoptosis by terminal deoxynucleotidyl transferase (TDT)-mediated dUTP-digoxigenin nick end labeling (TUNEL). qRT-PCR results indicated that the expression levels of Vg, VgR and four caspase genes were all significantly increased by the LC10 dose of imidacloprid, and TUNEL assays suggested that the frequency of apoptosis was significantly higher in the SBPH treated by the LC10 dose of imidacloprid, suggesting a potential correlation between the increased fecundity and the apoptosis of SBPH ovarioles. Additionally, the expression levels of RNA3 and capsid protein (CP) were both increased significantly by the LC10 dose of imidacloprid, whereas were decreased by the LC30 dose of imidacloprid compared to the control. Therefore, this study clarifies the mechanisms of sublethal effects of imidacloprid on viruliferous SBPH and could be used to optimize pest control strategies.

2021 ◽  
Vol 22 (19) ◽  
pp. 10299
Author(s):  
Yao Li ◽  
Yunye Zhang ◽  
Yin Xiang ◽  
Danyu Chen ◽  
Jia Hu ◽  
...  

Many vector-borne viruses possess the ability to manipulate vector behaviors to facilitate their transmission. There is evidence that the mechanism of this phenomenon has been described in part as direct manipulation through regulating vector chemosensation. Rice stripe virus (RSV) is transmitted by the small brown planthopper, Laodelphax striatellus (Fallen), in a persistent, circulative–propagative manner. The effect of RSV infection on the olfactory system of L. striatellus has not been fully elucidated. Here, we employed transcriptomic sequencing to analyze gene expression profiles in antennae, legs and heads (without antennae) from L. striatellus females and males with/without RSV infection. Comparisons of the differentially expressed genes (DEGs) among antennae, legs and heads indicated that tissue-specific changes in the gene expression profile were greater than sex-specific changes. A total of 17 olfactory related genes were differentially expressed in viruliferous antennae as compared to nonviruliferous antennae, including LstrOBP4/9, LstrCSP1/2/5, LstrGR28a/43a/43a-1, LstrIR1/2/NMDA1, LstrOR67/85e/56a/94 and LstrSNMP2/2-2. There are 23 olfactory related DEGs between viruliferous and nonviruliferous legs, including LstrOBP2/3/4/12/13, LstrCSP13/5/10, LstrIR1/2/Delta2/Delta2-1/kainate2/NMDA2, LstrOR12/21/31/68 and LstrORco. A low number of olfactory related DEGs were found between viruliferous and nonviruliferous heads, including LstrCSP1, LstrOBP2, LstrOR67 and LstrSNMP2-2. Among these DEGs, the expression patterns of LstrOBP2, LstrOBP3 and LstrOBP9 in three tissues was validated by quantitative real-time PCR. The demonstration of overall changes in the genes in L. striatellus’ chemoreception organs in response to RSV infection would not only improve our understanding of the effect of RSV on the olfactory related genes of insect vectors but also provide insights into developing approaches to control the plant virus transmission and spread as well as pest management in the future.


2003 ◽  
Vol 112 (1-2) ◽  
pp. 115-120 ◽  
Author(s):  
Cai Lijun ◽  
Ma Xizhi ◽  
Kang Lin ◽  
Deng Kejing ◽  
Zhao Shouyuan ◽  
...  

2018 ◽  
Author(s):  
Yao Li ◽  
Danyu Chen ◽  
Jia Hu ◽  
Lu Zhang ◽  
Yin Xiang ◽  
...  

Rice stripe virus (RSV), causal agent of rice stripe disease, is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a persistent manner. The midgut and salivary glands of SBPH are the first and last barriers in viral circulation and transmission, respectively; however, the precise mechanisms used by RSV to cross these organs and re-inoculate rice have not been fully elucidated. We obtained full-length cDNA of L. striatellus α-tubulin 2 (LsTUB) and found that RSV infection increased the level of LsTUB in vivo. Furthermore, LsTUB was shown to bind the RSV nonstructural protein 3 (NS3) in vitro. RNAi was used to reduce LsTUB expression, which caused a significant reduction in RSV titer, NS3 expression, RSV inoculation rates, and transmission to healthy plants. Electrical penetration graphs (EPG) showed that LsTUB knockdown by RNAi did not impact SBPH feeding; therefore, the reduction in RSV inoculation rate was likely caused by the decrease in RSV transmission. These findings suggest that LsTUB mediates the passage of RSV through midgut and salivary glands and leads to successful horizontal transmission.


Sign in / Sign up

Export Citation Format

Share Document