scholarly journals Adaptive Control Synchronization of a Novel Memristive Chaotic System for Secure Communication Applications

Inventions ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 30 ◽  
Author(s):  
Zain-Aldeen S. A. Rahman ◽  
Hayder A. A. Al-Kashoash ◽  
Saif Muneam Ramadhan ◽  
Yasir I. A. Al-Yasir

In this paper, a new memristive chaotic system is designed, analyzed, tested, and proposed. An adaptive control synchronization mechanism for both master and slave chaotic systems is also designed. The adaptive control law of this mechanism is derived based on the Lyapunov theory. A single parameter in the slave system has been assumed to be unknown. As the parameters of the master and slave are asymptotically matched, the unknown slave parameters will be identified according to the master’s parameters. The proposed system is used in a secure communication system. The achieved results prove a simple system implementation with a high security of data transmission.

2018 ◽  
Vol 7 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Hamed Tirandaz

Abstract Chaos control and synchronization of chaotic systems is seemingly a challenging problem and has got a lot of attention in recent years due to its numerous applications in science and industry. This paper concentrates on the control and synchronization problem of the three-dimensional (3D) Zhang chaotic system. At first, an adaptive control law and a parameter estimation law are achieved for controlling the behavior of the Zhang chaotic system. Then, non-identical synchronization of Zhang chaotic system is provided with considering the Lü chaotic system as the follower system. The synchronization problem and parameters identification are achieved by introducing an adaptive control law and a parameters estimation law. Stability analysis of the proposed method is proved by the Lyapanov stability theorem. In addition, the convergence of the estimated parameters to their truly unknown values are evaluated. Finally, some numerical simulations are carried out to illustrate and to validate the effectiveness of the suggested method.


Robotica ◽  
2006 ◽  
Vol 24 (4) ◽  
pp. 523-525 ◽  
Author(s):  
Recep Burkan

In the paper, a new adaptive control law for controlling robot manipulators is derived based on the Lyapunov theory; trigonometric functions are used for the derivation of the parameter estimation law. In this note, we have derived a logarithmic parameter estimation law based on a previous paper, and the boundedness of tracking error has been shown.


Author(s):  
Vaidyanathan SUNDARAPANDIAN ◽  
Karthikeyan RAJAGOPAL

In this paper, we apply adaptive control method toderive new results for the anti-synchronization of identical Tigansystems (2008), identical Li systems (2009) and non-identical Tiganand Li systems. In adaptive anti-synchronization of identical chaoticsystems, the parameters of the master and slave systems are unknownand we devise feedback control law using the estimates of the systemparameters. In adaptive anti-synchronization of non-identical chaoticsystems, the parameters of the master system are known, but theparameters of the slave system are unknown and we devise feedbackcontrol law using the estimates of the parameters of the slave system.Our adaptive synchronization results derived in this paper for theuncertain Tigan and Li systems are established using Lyapunovstability theory. Since the Lyapunov exponents are not required forthese calculations, the adaptive control method is very effective andconvenient to achieve anti-synchronization of identical and nonidenticalTigan and Li systems. Numerical simulations are shown todemonstrate the effectiveness of the adaptive anti-synchronizationschemes for the uncertain chaotic systems addressed in this paper.


2013 ◽  
Vol 805-806 ◽  
pp. 530-536
Author(s):  
Xiao Qiang Du ◽  
Yong Duan Song ◽  
Lei Wang ◽  
Yan Hui Wang ◽  
Bao Liang Zan

This work introduced a kind of advanced adaptive control approach applied in Active magnetic bearing (AMB) to suppress the rotors vibrations in Flywheel Energy Storage System (FESS). The bearings system was built as a five degree-of-freedom (DOF) system and the four radial DOF among these were adopted AMB. Based on the Lyapunov theory, the proposed adaptive control law was designed to compensate various disturbance factors by controlling the AMBs. Finally, the simulation result illustrates that the proposed adaptive control law is effective to reduce the rotors vibration and improve the systems stability.


Author(s):  
H. Najafizadegan ◽  
M. Khoeiniha ◽  
H. Zarabadipour

In this paper, we investigate the chaos anti-synchronization between two identical and different chaotic systems with fully unknown parameters via adaptive control. Based on the Lyapunov stability theory, an adaptive control law and a parameter update rule for unknown parameters are designed such that the two different chaotic systems can be anti-synchronized asymptotically. Theoretical analysis and numerical simulations are shown to verify the results.


1999 ◽  
Vol 13 (10) ◽  
pp. 667-676 ◽  
Author(s):  
Youngjoo Cho ◽  
Byung Suk Song ◽  
Kyongsu Yi

Sign in / Sign up

Export Citation Format

Share Document