scholarly journals Binary and Multiclass Text Classification by Means of Separable Convolutional Neural Network

Inventions ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 70
Author(s):  
Elena Solovyeva ◽  
Ali Abdullah

In this paper, the structure of a separable convolutional neural network that consists of an embedding layer, separable convolutional layers, convolutional layer and global average pooling is represented for binary and multiclass text classifications. The advantage of the proposed structure is the absence of multiple fully connected layers, which is used to increase the classification accuracy but raises the computational cost. The combination of low-cost separable convolutional layers and a convolutional layer is proposed to gain high accuracy and, simultaneously, to reduce the complexity of neural classifiers. Advantages are demonstrated at binary and multiclass classifications of written texts by means of the proposed networks under the sigmoid and Softmax activation functions in convolutional layer. At binary and multiclass classifications, the accuracy obtained by separable convolutional neural networks is higher in comparison with some investigated types of recurrent neural networks and fully connected networks.

Author(s):  
Kenta Shirane ◽  
Takahiro Yamamoto ◽  
Hiroyuki Tomiyama

In this paper, we present a case study on approximate multipliers for MNIST Convolutional Neural Network (CNN). We apply approximate multipliers with different bit-width to the convolution layer in MNIST CNN, evaluate the accuracy of MNIST classification, and analyze the trade-off between approximate multiplier’s area, critical path delay and the accuracy. Based on the results of the evaluation and analysis, we propose a design methodology for approximate multipliers. The approximate multipliers consist of some partial products, which are carefully selected according to the CNN input. With this methodology, we further reduce the area and the delay of the multipliers with keeping high accuracy of the MNIST classification.


2021 ◽  
Vol 3 (1) ◽  
pp. 8-14
Author(s):  
D. V. Fedasyuk ◽  
◽  
T. V. Demianets ◽  

A melanoma is the deadliest skin cancer, so early diagnosis can provide a positive prognosis for treatment. Modern methods for early detecting melanoma on the image of the tumor are considered, and their advantages and disadvantages are analyzed. The article demonstrates a prototype of a mobile application for the detection of melanoma on the image of a mole based on a convolutional neural network, which is developed for the Android operating system. The mobile application contains melanoma detection functions, history of the previous examinations and a gallery with images of the previous examinations grouped by the location of the lesion. The HAM10000-based training dataset has been supplemented with the images of melanoma from the archive of The International Skin Imaging Collaboration to eliminate class imbalances and improve network accuracy. The search for existing neural networks that provide high accuracy was conducted, and VGG16, MobileNet, and NASNetMobile neural networks have been selected for research. Transfer learning and fine-tuning has been applied to the given neural networks to adapt the networks for the task of skin lesion classification. It is established that the use of these techniques allows to obtain high accuracy of the neural network for this task. The process of converting a convolutional neural network to an optimized Flatbuffer format using TensorFlow Lite for placement and use on a mobile device is described. The performance characteristics of the selected neural networks on the mobile device are evaluated according to the classification time on the CPU and GPU and the amount of memory occupied by the file of a single network is compared. The neural network file size was compared before and after conversion. It has been shown that the use of the TensorFlow Lite converter significantly reduces the file size of the neural network without affecting its accuracy by using an optimized format. The results of the study indicate a high speed of application and compactness of networks on the device, and the use of graphical acceleration can significantly decrease the image classification time of the tumor. According to the analyzed parameters, NASNetMobile was selected as the optimal neural network to be used in the mobile application of melanoma detection.


2021 ◽  
Author(s):  
Wael Alnahari

Abstract In this paper, I proposed an iris recognition system by using deep learning via neural networks (CNN). Although CNN is used for machine learning, the recognition is achieved by building a non-trained CNN network with multiple layers. The main objective of the code the test pictures’ category (aka person name) with a high accuracy rate after having extracted enough features from training pictures of the same category which are obtained from a that I added to the code. I used IITD iris which included 10 iris pictures for 223 people.


2020 ◽  
Vol 1 ◽  
pp. 6
Author(s):  
Henning Petzka ◽  
Martin Trimmel ◽  
Cristian Sminchisescu

Symmetries in neural networks allow different weight configurations leading to the same network function. For odd activation functions, the set of transformations mapping between such configurations have been studied extensively, but less is known for neural networks with ReLU activation functions. We give a complete characterization for fully-connected networks with two layers. Apart from two well-known transformations, only degenerated situations allow additional transformations that leave the network function unchanged. Reduction steps can remove only part of the degenerated cases. Finally, we present a non-degenerate situation for deep neural networks leading to new transformations leaving the network function intact.


In medical science, brain tumor is the most common and aggressive disease and is known to be risk factors that have been confirmed by research. A brain tumor is the anomalous development of cell inside the brain. One conventional strategy to separate brain tumors is by reviewing the MRI pictures of the patient's mind. In this paper, we have designed a Convolutional Neural Network (CNN) to perceive whether the image contains tumor or not. We have designed 5 different CNN and examined each design on the basis of convolution layers, max-pooling, and flattening layers and activation functions. In each design we have made some changes on layers i.e. using different pooling layers in design 2 and 4, using different activation functions in design 2 and 3, and adding more Fully Connected layers in design 5. We examine their results and compare it with other designs. After comparing their results we find a best design out of 5 based on their accuracy. Utilizing our Convolutional neural network, we could accomplish a training accuracy and validation accuracy of design 3 at 100 epochs is 99.99% and 92.34%, best case scenario.


2021 ◽  
Vol 7 ◽  
pp. e497
Author(s):  
Shakeel Shafiq ◽  
Tayyaba Azim

Deep neural networks have been widely explored and utilised as a useful tool for feature extraction in computer vision and machine learning. It is often observed that the last fully connected (FC) layers of convolutional neural network possess higher discrimination power as compared to the convolutional and maxpooling layers whose goal is to preserve local and low-level information of the input image and down sample it to avoid overfitting. Inspired from the functionality of local binary pattern (LBP) operator, this paper proposes to induce discrimination into the mid layers of convolutional neural network by introducing a discriminatively boosted alternative to pooling (DBAP) layer that has shown to serve as a favourable replacement of early maxpooling layer in a convolutional neural network (CNN). A thorough research of the related works show that the proposed change in the neural architecture is novel and has not been proposed before to bring enhanced discrimination and feature visualisation power achieved from the mid layer features. The empirical results reveal that the introduction of DBAP layer in popular neural architectures such as AlexNet and LeNet produces competitive classification results in comparison to their baseline models as well as other ultra-deep models on several benchmark data sets. In addition, better visualisation of intermediate features can allow one to seek understanding and interpretation of black box behaviour of convolutional neural networks, used widely by the research community.


2020 ◽  
Vol 10 (8) ◽  
pp. 2929 ◽  
Author(s):  
Ibrahem Kandel ◽  
Mauro Castelli

Histopathology is the study of tissue structure under the microscope to determine if the cells are normal or abnormal. Histopathology is a very important exam that is used to determine the patients’ treatment plan. The classification of histopathology images is very difficult to even an experienced pathologist, and a second opinion is often needed. Convolutional neural network (CNN), a particular type of deep learning architecture, obtained outstanding results in computer vision tasks like image classification. In this paper, we propose a novel CNN architecture to classify histopathology images. The proposed model consists of 15 convolution layers and two fully connected layers. A comparison between different activation functions was performed to detect the most efficient one, taking into account two different optimizers. To train and evaluate the proposed model, the publicly available PatchCamelyon dataset was used. The dataset consists of 220,000 annotated images for training and 57,000 unannotated images for testing. The proposed model achieved higher performance compared to the state-of-the-art architectures with an AUC of 95.46%.


Author(s):  
Xiaoyang Liu ◽  
Zhigang Zeng

AbstractThe paper presents memristor crossbar architectures for implementing layers in deep neural networks, including the fully connected layer, the convolutional layer, and the pooling layer. The crossbars achieve positive and negative weight values and approximately realize various nonlinear activation functions. Then the layers constructed by the crossbars are adopted to build the memristor-based multi-layer neural network (MMNN) and the memristor-based convolutional neural network (MCNN). Two kinds of in-situ weight update schemes, which are the fixed-voltage update and the approximately linear update, respectively, are used to train the networks. Consider variations resulted from the inherent characteristics of memristors and the errors of programming voltages, the robustness of MMNN and MCNN to these variations is analyzed. The simulation results on standard datasets show that deep neural networks (DNNs) built by the memristor crossbars work satisfactorily in pattern recognition tasks and have certain robustness to memristor variations.


Sign in / Sign up

Export Citation Format

Share Document