scholarly journals APPLICATION OF CONVOLUTIONAL NEURAL NETWORK FOR DETECTION OF MELANOMA USING SKIN LESION IMAGE ON MOBILE DEVICE

2021 ◽  
Vol 3 (1) ◽  
pp. 8-14
Author(s):  
D. V. Fedasyuk ◽  
◽  
T. V. Demianets ◽  

A melanoma is the deadliest skin cancer, so early diagnosis can provide a positive prognosis for treatment. Modern methods for early detecting melanoma on the image of the tumor are considered, and their advantages and disadvantages are analyzed. The article demonstrates a prototype of a mobile application for the detection of melanoma on the image of a mole based on a convolutional neural network, which is developed for the Android operating system. The mobile application contains melanoma detection functions, history of the previous examinations and a gallery with images of the previous examinations grouped by the location of the lesion. The HAM10000-based training dataset has been supplemented with the images of melanoma from the archive of The International Skin Imaging Collaboration to eliminate class imbalances and improve network accuracy. The search for existing neural networks that provide high accuracy was conducted, and VGG16, MobileNet, and NASNetMobile neural networks have been selected for research. Transfer learning and fine-tuning has been applied to the given neural networks to adapt the networks for the task of skin lesion classification. It is established that the use of these techniques allows to obtain high accuracy of the neural network for this task. The process of converting a convolutional neural network to an optimized Flatbuffer format using TensorFlow Lite for placement and use on a mobile device is described. The performance characteristics of the selected neural networks on the mobile device are evaluated according to the classification time on the CPU and GPU and the amount of memory occupied by the file of a single network is compared. The neural network file size was compared before and after conversion. It has been shown that the use of the TensorFlow Lite converter significantly reduces the file size of the neural network without affecting its accuracy by using an optimized format. The results of the study indicate a high speed of application and compactness of networks on the device, and the use of graphical acceleration can significantly decrease the image classification time of the tumor. According to the analyzed parameters, NASNetMobile was selected as the optimal neural network to be used in the mobile application of melanoma detection.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Rui Liu

In this paper, we propose a multiresidual module convolutional neural network-based method for athlete pose estimation in sports game videos. The network firstly designs an improved residual module based on the traditional residual module. Firstly, a large perceptual field residual module is designed to learn the correlation between the athlete components in the sports game video within a large perceptual field. A multiscale residual module is designed in the paper to better solve the inaccuracy of the pose estimation due to the problem of scale change of the athlete components in the sports game video. Secondly, these three residual modules are used as the building blocks of the convolutional neural network. When the resolution is high, the large perceptual field residual module and the multiscale residual module are used to capture information in a larger range as well as at each scale, and when the resolution is low, only the improved residual module is used. Finally, four multiresidual module convolutional neural networks are used to form the final multiresidual module stacked convolutional neural network. The neural network model proposed in this paper achieves high accuracy of 89.5% and 88.2% on the upper arm and lower arm, respectively, so the method in this paper reduces the influence of occlusion on the athlete’s posture estimation to a certain extent. Through the experiments, it can be seen that the proposed multiresidual module stacked convolutional neural network-based method for athlete pose estimation in sports game videos further improves the accuracy of athlete pose estimation in sports game videos.


Author(s):  
Kenta Shirane ◽  
Takahiro Yamamoto ◽  
Hiroyuki Tomiyama

In this paper, we present a case study on approximate multipliers for MNIST Convolutional Neural Network (CNN). We apply approximate multipliers with different bit-width to the convolution layer in MNIST CNN, evaluate the accuracy of MNIST classification, and analyze the trade-off between approximate multiplier’s area, critical path delay and the accuracy. Based on the results of the evaluation and analysis, we propose a design methodology for approximate multipliers. The approximate multipliers consist of some partial products, which are carefully selected according to the CNN input. With this methodology, we further reduce the area and the delay of the multipliers with keeping high accuracy of the MNIST classification.


Inventions ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 70
Author(s):  
Elena Solovyeva ◽  
Ali Abdullah

In this paper, the structure of a separable convolutional neural network that consists of an embedding layer, separable convolutional layers, convolutional layer and global average pooling is represented for binary and multiclass text classifications. The advantage of the proposed structure is the absence of multiple fully connected layers, which is used to increase the classification accuracy but raises the computational cost. The combination of low-cost separable convolutional layers and a convolutional layer is proposed to gain high accuracy and, simultaneously, to reduce the complexity of neural classifiers. Advantages are demonstrated at binary and multiclass classifications of written texts by means of the proposed networks under the sigmoid and Softmax activation functions in convolutional layer. At binary and multiclass classifications, the accuracy obtained by separable convolutional neural networks is higher in comparison with some investigated types of recurrent neural networks and fully connected networks.


2021 ◽  
Author(s):  
Wael Alnahari

Abstract In this paper, I proposed an iris recognition system by using deep learning via neural networks (CNN). Although CNN is used for machine learning, the recognition is achieved by building a non-trained CNN network with multiple layers. The main objective of the code the test pictures’ category (aka person name) with a high accuracy rate after having extracted enough features from training pictures of the same category which are obtained from a that I added to the code. I used IITD iris which included 10 iris pictures for 223 people.


2017 ◽  
Vol 10 (27) ◽  
pp. 1329-1342 ◽  
Author(s):  
Javier O. Pinzon Arenas ◽  
Robinson Jimenez Moreno ◽  
Paula C. Useche Murillo

This paper presents the implementation of a Region-based Convolutional Neural Network focused on the recognition and localization of hand gestures, in this case 2 types of gestures: open and closed hand, in order to achieve the recognition of such gestures in dynamic backgrounds. The neural network is trained and validated, achieving a 99.4% validation accuracy in gesture recognition and a 25% average accuracy in RoI localization, which is then tested in real time, where its operation is verified through times taken for recognition, execution behavior through trained and untrained gestures, and complex backgrounds.


Author(s):  
Juan D Pineda-Jaramillo ◽  
Ricardo Insa ◽  
Pablo Martínez

This paper presents the training of a neural network using consumption data measured in the underground network of Valencia (Spain), with the objective of estimating the energy consumption of the systems. After the calibration and validation of the neural network using part of the gathered consumption data, the results obtained show that the neural network is capable of predicting power consumption with high accuracy. Once fully trained, the network can be used to study the energy consumption of a metro system and for testing the hypothetical operation scenarios.


2021 ◽  
Vol 25 (3) ◽  
pp. 31-35
Author(s):  
Piotr Więcek ◽  
Dominik Sankowski

The article presents a new algorithm for increasing the resolution of thermal images. For this purpose, the residual network was integrated with the Kernel-Sharing Atrous Convolution (KSAC) image sub-sampling module. A significant reduction in the algorithm’s complexity and shortening the execution time while maintaining high accuracy were achieved. The neural network has been implemented in the PyTorch environment. The results of the proposed new method of increasing the resolution of thermal images with sizes 32 × 24, 160 × 120 and 640 × 480 for scales up to 6 are presented.


Author(s):  
S O Stepanenko ◽  
P Y Yakimov

Object classification with use of neural networks is extremely current today. YOLO is one of the most often used frameworks for object classification. It produces high accuracy but the processing speed is not high enough especially in conditions of limited performance of a computer. This article researches use of a framework called NVIDIA TensorRT to optimize YOLO with the aim of increasing the image processing speed. Saving efficiency and quality of the neural network work TensorRT allows us to increase the processing speed using an optimization of the architecture and an optimization of calculations on a GPU.


2021 ◽  
Author(s):  
Ghassan Mohammed Halawani

The main purpose of this project is to modify a convolutional neural network for image classification, based on a deep-learning framework. A transfer learning technique is used by the MATLAB interface to Alex-Net to train and modify the parameters in the last two fully connected layers of Alex-Net with a new dataset to perform classifications of thousands of images. First, the general common architecture of most neural networks and their benefits are presented. The mathematical models and the role of each part in the neural network are explained in detail. Second, different neural networks are studied in terms of architecture, application, and the working method to highlight the strengths and weaknesses of each of neural network. The final part conducts a detailed study on one of the most powerful deep-learning networks in image classification – i.e. the convolutional neural network – and how it can be modified to suit different classification tasks by using transfer learning technique in MATLAB.


Author(s):  
P I Katkov ◽  
N S Davydov ◽  
A G Khramov ◽  
A N Nikonorov

In this paper, the use of artificial neural networks for the myocardial infarction diagnosis is investigated. For the analysis, 169 ECG records were taken from the database of the Massachusetts University of Technology, of which 80 correspond to healthy patients and 89 correspond to patients who have a myocardial infarction. Each signal has been preprocessed. The result of preprocessing each signal is a common segment consisting of 1000 samples. To detect myocardial infarction, a convolutional neural network consisting of two convolutional layers was used. For accuracy of the neural network leave-one-out crossvalidation was used. The best results of the experiments are obtained with the neural network for leads V1, V2, AVF.


Sign in / Sign up

Export Citation Format

Share Document