scholarly journals Hydrogen Production by Fluidized Bed Reactors: A Quantitative Perspective Using the Supervised Machine Learning Approach

J ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 266-287
Author(s):  
Zheng Lian ◽  
Yixiao Wang ◽  
Xiyue Zhang ◽  
Abubakar Yusuf ◽  
Lord Famiyeh ◽  
...  

The current hydrogen generation technologies, especially biomass gasification using fluidized bed reactors (FBRs), were rigorously reviewed. There are involute operational parameters in a fluidized bed gasifier that determine the anticipated outcomes for hydrogen production purposes. However, limited reviews are present that link these parametric conditions with the corresponding performances based on experimental data collection. Using the constructed artificial neural networks (ANNs) as the supervised machine learning algorithm for data training, the operational parameters from 52 literature reports were utilized to perform both the qualitative and quantitative assessments of the performance, such as the hydrogen yield (HY), hydrogen content (HC) and carbon conversion efficiency (CCE). Seven types of operational parameters, including the steam-to-biomass ratio (SBR), equivalent ratio (ER), temperature, particle size of the feedstock, residence time, lower heating value (LHV) and carbon content (CC), were closely investigated. Six binary parameters have been identified to be statistically significant to the performance parameters (hydrogen yield (HY)), hydrogen content (HC) and carbon conversion efficiency (CCE)) by analysis of variance (ANOVA). The optimal operational conditions derived from the machine leaning were recommended according to the needs of the outcomes. This review may provide helpful insights for researchers to comprehensively consider the operational conditions in order to achieve high hydrogen production using fluidized bed reactors during biomass gasification.

2019 ◽  
Vol 44 (32) ◽  
pp. 17260-17268 ◽  
Author(s):  
Emine Elmaslar Ozbas ◽  
Dogukan Aksu ◽  
Atakan Ongen ◽  
Muhammed Ali Aydin ◽  
H. Kurtulus Ozcan

2020 ◽  
Vol 44 (13) ◽  
pp. 10442-10452 ◽  
Author(s):  
Tiago B. Ferreira ◽  
Gabriel C. Rego ◽  
Lucas R. Ramos ◽  
Camila A. Menezes ◽  
Edson L. Silva

2012 ◽  
Vol 37 (22) ◽  
pp. 16925-16934 ◽  
Author(s):  
Géssia Momoe Shida ◽  
Leandro Takano Sader ◽  
Eduardo Lucena Cavalcante de Amorim ◽  
Isabel Kimiko Sakamoto ◽  
Sandra Imaculada Maintinguer ◽  
...  

Author(s):  
Meltem Dogan ◽  
Dusko Posarac ◽  
John Grace ◽  
Alaa-Eldin M. Adris ◽  
C. Jim Lim

Fluidized bed reactors for steam methane reforming, with and without immersed membrane surfaces for withdrawal of hydrogen, are modeled with oxygen added in order to provide the endothermic heat required by the reforming reactions. Porous alumina, palladium and palladium-coated high-flux tubes are investigated as separation materials, the latter two being permselective. Hydrogen yield and permeate hydrogen molar flow are predicted to decrease with increasing oxygen flow, and to increase with temperature. When the steam-to-carbon ratio increases, permeate hydrogen yield decreases slightly, while the total hydrogen yield increases for all configurations. The flow of oxygen required to achieve autothermal conditions depends on such factors as the reactor temperature, steam-to-carbon ratio and preheating of the feed.


2019 ◽  
Vol 83 ◽  
pp. 01001
Author(s):  
Yau-Pin Chyou ◽  
Po-Chuang Chen ◽  
Der-Ming Chang ◽  
Keng-Tung Wu ◽  
Rei-Yu Chein

In this study, solid biomass is gasified in fluidized-bed reactors, to investigate the effect of various means on syngas composition, especially for enhancing hydrogen content in the production gas. Conventionally, air is supplied to the reactor as gasification medium, which inevitably results in a high nitrogen content in the syngas. Alternatively, steam or oxygen-rich gas can be supplied to improve the syngas characteristics. On the other hand, a so-called “indirect gasification technology” realizes the whole conversion processes in dual reactors, for combustion and gasification, respectively; moreover, solid materials are circulated through two reactors, while gaseous streams in between are separated from each other. Hence, this system features the advantage of producing near nitrogen-free syngas in the gasifier, with air as oxidant in the combustor. Baseline experiments with various operating parameters, including air equivalence ratio (ER) and temperature, were firstly performed in a 30 kWth bubbling fluidized-bed gasifier; then, trial tests were conducted with the aforementioned operational and constructional factors. The preliminary test data show positive trends for the enhancement of hydrogen generation via biomass gasification. Further efforts will be pursued to establish a data base, which would be beneficial to extensive researches on clean energy and carbon abatement technologies.


2019 ◽  
Vol 44 (21) ◽  
pp. 10350-10360 ◽  
Author(s):  
Vera Marcantonio ◽  
Marcello De Falco ◽  
Mauro Capocelli ◽  
Enrico Bocci ◽  
Andrea Colantoni ◽  
...  

2012 ◽  
Vol 608-609 ◽  
pp. 1467-1471
Author(s):  
Jian Wen Ye ◽  
Dong Lai Xie ◽  
Zhenhua Yang ◽  
Zhiyu Cao

Hydrogen is an important chemical commodity. Fluidized bed oxygen permeable membrane reactor is a novel technology for hydrogen production from natural gas reforming. An Aspen model is built for this novel reactor. Influences of reaction pressure, oxygen to carbon ratio, and steam to carbon ratio on the hydrogen concentration in syn-gas, hydrogen yield, and reaction temperature and methane conversion are studied. The results are compared with the ordinary fluidized bed reactor. It shows that the fluidized bed oxygen permeable membrane reactor has a higher methane conversion and a hydrogen yield and a higher hydrogen concentration in the syngas, due to its in-situ oxygen separation from air.


Sign in / Sign up

Export Citation Format

Share Document