scholarly journals Urinary Biomarkers α-GST and π-GST for Evaluation and Monitoring in Living and Deceased Donor Kidney Grafts

2019 ◽  
Vol 8 (11) ◽  
pp. 1899 ◽  
Author(s):  
Shadi Katou ◽  
Brigitta Globke ◽  
M. Haluk Morgul ◽  
Thomas Vogel ◽  
Benjamin Struecker ◽  
...  

The aim of this study was to analyze the value of urine α- and π-GST in monitoring and predicting kidney graft function following transplantation. In addition, urine samples from corresponding organ donors was analyzed and compared with graft function after organ donation from brain-dead and living donors. Urine samples from brain-dead (n = 30) and living related (n = 50) donors and their corresponding recipients were analyzed before and after kidney transplantation. Urine α- and π-GST values were measured. Kidney recipients were grouped into patients with acute graft rejection (AGR), calcineurin inhibitor toxicity (CNI), and delayed graft function (DGF), and compared to those with unimpaired graft function. Urinary π-GST revealed significant differences in deceased kidney donor recipients with episodes of AGR or DGF at day one after transplantation (p = 0.0023 and p = 0.036, respectively). High π-GST values at postoperative day 1 (cutoff: >21.4 ng/mg urine creatinine (uCrea) or >18.3 ng/mg uCrea for AGR or DGF, respectively) distinguished between rejection and no rejection (sensitivity, 100%; specificity, 66.6%) as well as between DGF and normal-functioning grafts (sensitivity, 100%; specificity, 62.6%). In living donor recipients, urine levels of α- and π-GST were about 10 times lower than in deceased donor recipients. In deceased donors with impaired graft function in corresponding recipients, urinary α- and π-GST were elevated. α-GST values >33.97 ng/mg uCrea were indicative of AGR with a sensitivity and specificity of 77.7% and 100%, respectively. In deceased donor kidney transplantation, evaluation of urinary α- and π-GST seems to predict different events that deteriorate graft function. To elucidate the potential advantages of such biomarkers, further analysis is warranted.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Subagini Nagarajah ◽  
Shengqiang Xia ◽  
Marianne Rasmussen ◽  
Martin Tepel

Abstract β-1,4-mannosylglycoprotein 4-β-N-acetylglucosaminyltransferase (MGAT3) is a key molecule for the innate immune system. We tested the hypothesis that intronic antisense long non-coding RNA, MGAT3-AS1, can predict delayed allograft function after kidney transplantation. We prospectively assessed kidney function and MGAT3-AS1 in 129 incident deceased donor kidney transplant recipients before and after transplantation. MGAT3-AS1 levels were measured in mononuclear cells using qRT-PCR. Delayed graft function was defined by at least one dialysis session within 7 days of transplantation. Delayed graft function occurred in 22 out of 129 transplant recipients (17%). Median MGAT3-AS1 after transplantation was significantly lower in patients with delayed graft function compared to patients with immediate graft function (6.5 × 10−6, IQR 3.0 × 10−6 to 8.4 × 10−6; vs. 8.3 × 10−6, IQR 5.0 × 10−6 to 12.8 × 10−6; p < 0.05). The median preoperative MGAT3-AS1 was significantly lower in kidney recipients with delayed graft function (5.1 × 10−6, IQR, 2.4 × 10−6 to 6.8 × 10−6) compared to recipients with immediate graft function (8.9 × 10−6, IQR, 6.8 × 10−6 to 13.4 × 10−6; p < 0.05). Receiver-operator characteristics showed that preoperative MGAT3-AS1 predicted delayed graft function (area under curve, 0.83; 95% CI, 0.65 to 1.00; p < 0.01). We observed a positive predictive value of 0.57, and a negative predictive value of 0.95. Long non-coding RNA, MGAT3-AS1, indicates short-term outcome in patients with deceased donor kidney transplantation.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Rao Chen ◽  
Haifeng Wang ◽  
Lei Song ◽  
Jianfei Hou ◽  
Jiawei Peng ◽  
...  

Abstract Background Delayed graft function (DGF) is closely associated with the use of marginal donated kidneys due to deficits during transplantation and in recipients. We aimed to predict the incidence of DGF and evaluate its effect on graft survival. Methods This retrospective study on kidney transplantation was conducted from January 1, 2018, to December 31, 2019, at the Second Xiangya Hospital of Central South University. We classified recipients whose operations were performed in different years into training and validation cohorts and used data from the training cohort to analyze predictors of DGF. A nomogram was then constructed to predict the likelihood of DGF based on these predictors. Results The incidence rate of DGF was 16.92%. Binary logistic regression analysis showed correlations between the incidence of DGF and cold ischemic time (CIT), warm ischemic time (WIT), terminal serum creatine (Scr) concentration, duration of pretransplant dialysis, primary cause of donor death, and usage of LifePort. The internal accuracy of the nomogram was 83.12%. One-year graft survival rates were 93.59 and 99.74%, respectively, for the groups with and without DGF (P < 0.05). Conclusion The nomogram established in this study showed good accuracy in predicting DGF after deceased donor kidney transplantation; additionally, DGF decreased one-year graft survival.


Sign in / Sign up

Export Citation Format

Share Document