scholarly journals Polymeric Composites Based on Carboxymethyl Cellulose Cryogel and Conductive Polymers: Synthesis and Characterization

2020 ◽  
Vol 4 (2) ◽  
pp. 33
Author(s):  
Sahin Demirci ◽  
S. Duygu Sutekin ◽  
Nurettin Sahiner

In this study, a super porous polymeric network prepared from a natural polymer, carboxymethyl cellulose (CMC), was used as a scaffold in the preparation of conductive polymers such as poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh). CMC–conductive polymer composites were characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA) techniques, and conductivity measurements. The highest conductivity was observed as 4.36 × 10−4 ± 4.63 × 10−5 S·cm−1 for CMC–PANi cryogel composite. The changes in conductivity of prepared CMC cryogel and its corresponding PAN, PPy, and PTh composites were tested against HCl and NH3 vapor. The changes in conductivity values of CMC cryogel upon HCl and NH3 vapor treatment were found to increase 1.5- and 2-fold, respectively, whereas CMC–PANi composites showed a 143-fold increase in conductivity upon HCl and a 12-fold decrease in conductivity upon NH3 treatment, suggesting the use of natural polymer–conductive polymer composites as sensor for these gases.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Junwei Gu ◽  
Kunpeng Ruan

AbstractRapid development of energy, electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites. However, the thermal conductivity coefficient (λ) values of prepared thermally conductive polymer composites are still difficult to achieve expectations, which has become the bottleneck in the fields of thermally conductive polymer composites. Aimed at that, based on the accumulation of the previous research works by related researchers and our research group, this paper proposes three possible directions for breaking through the bottlenecks: (1) preparing and synthesizing intrinsically thermally conductive polymers, (2) reducing the interfacial thermal resistance in thermally conductive polymer composites, and (3) establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization. Also, the future development trends of the three above-mentioned directions are foreseen, hoping to provide certain basis and guidance for the preparation, researches and development of thermally conductive polymers and their composites.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Toshiro Yamanaka ◽  
Fumihito Arai

AbstractFor future medical microrobotics, we have proposed the concept of the electroosmotic self-propulsive microswimmer powered by biofuel cell. According to the derived theoretical model, its self-propulsion velocity is inversely proportional to the length of the microswimmer, while it is proportional to the open circuit potential generated by the biofuel cell which does not depend on its size. Therefore, under conditions where those mechanisms work, it can be expected that the smaller its microswimmer size, the faster its self-propulsion velocity. Because of its remarkable feature, this concept is considered to be suitable as propulsion mechanisms for future medical microrobots to move inside the human body through the vascular system, including capillaries. We have already proved the mechanisms by observing the several 10 μm/s velocity of 100 μm prototypes fabricated by the optical photolithography using several photomasks and alignment steps. However, the standard photolithography was not suitable for further miniaturization of prototypes due to its insufficient resolution. In this research, we adopted femtosecond-laser 3D microlithography for multi-materials composing of the conductive polymer composites and nonconductive polymer composite and succeeded in fabricating 10 μm prototypes. Then we demonstrated more than 100 μm/s velocity of the prototype experimentally and proved its validity of the smaller and faster feature.


2000 ◽  
Vol 88 (3) ◽  
pp. 1480-1487 ◽  
Author(s):  
Guozhang Wu ◽  
Shigeo Asai ◽  
Cheng Zhang ◽  
Tadashi Miura ◽  
Masao Sumita

2005 ◽  
Vol 222 (1) ◽  
pp. 187-194 ◽  
Author(s):  
Jean Fran�ois Feller ◽  
Patrick Glouannec ◽  
Patrick Salagnac ◽  
Guillaume Droval ◽  
Philippe Chauvelon

2018 ◽  
Vol 68 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Yi Liu ◽  
Han Zhang ◽  
Harshit Porwal ◽  
James JC Busfield ◽  
Ton Peijs ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (20) ◽  
pp. 15070-15076 ◽  
Author(s):  
Linxiang He ◽  
Sie Chin Tjong

Nano silver-decorated reduced graphene oxide (Ag–RGO) sheets were synthesized by simply dissolving graphite oxide and silver nitrate inN,N-dimethylformamide and keeping the suspension at 90 °C for 12 h.


Sign in / Sign up

Export Citation Format

Share Document