scholarly journals A Summary of the Special Issue “Emerging Network-on-Chip Architectures for Low Power Embedded Systems”

2017 ◽  
Vol 7 (3) ◽  
pp. 18
Author(s):  
Davide Patti
Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


Author(s):  
N Poornima ◽  
Seetharaman Gopalakrishnan ◽  
Tughrul Arsalan ◽  
T. N. Prabakar ◽  
M. Santhi

2018 ◽  
Vol 63 ◽  
pp. 104-115 ◽  
Author(s):  
Mohammad Baharloo ◽  
Ahmad Khonsari

DYNA ◽  
2017 ◽  
Vol 84 (201) ◽  
pp. 202 ◽  
Author(s):  
Maribell Sacanamboy Franco ◽  
Freddy Bolaños-Martinez ◽  
Álvaro Bernal-Noreña ◽  
Rubén Nieto-Londoño

Los sistemas de red en chip (NoC) fueron desarrollados originalmente para proporcionar un alto rendimiento, mediante la disponibilidad de varias unidades de procesamiento, conectadas a través de una red cableada dentro del circuito integrado. Wireless NoC (WiNoC o WNoC) son una evolución natural de los sistemas NoC, que integran una comunicación jerárquica dentro del chip para mejorar la escalabilidad. El mapeo de tareas en los sistemas WNoC representa un proceso desafiante, que a menudo implica varios objetivos de optimización, como potencia, rendimiento, productividad, uso de recursos y métricas de red. Este artículo describe un algoritmo genético basado en un enfoque para encontrar soluciones óptimas de asignación de tareas en tiempo de diseño, para sistemas embebidos que trabajan sobre un WiNoC. Los objetivos de optimización fueron: Aceleración, Consumo de Energía y Ancho de Banda. La red de destino utilizada para la simulación puede ser vista como un WiNoC jerárquica de dos niveles. El primer nivel corresponde a un conjunto de subredes que están conectadas por cables y son de tipo malla. El segundo nivel corresponde a una topología en estrella de enlaces inalámbricos, que conectan las subredes de primer nivel. El algoritmo propuesto muestra un buen desempeño en relación con los objetivos de optimización y la WiNoC heterogéneo simulada.


Sign in / Sign up

Export Citation Format

Share Document