scholarly journals Revisiting Vertical Land Motion and Sea Level Trends in the Northeastern Adriatic Sea Using Satellite Altimetry and Tide Gauge Data

2020 ◽  
Vol 8 (11) ◽  
pp. 949 ◽  
Author(s):  
Francesco De Biasio ◽  
Giorgio Baldin ◽  
Stefano Vignudelli

We propose a revisited approach to estimating sea level change trends based on the integration of two measuring systems: satellite altimetry and tide gauge (TG) time series of absolute and relative sea level height. Quantitative information on vertical crustal motion trends at six TG stations of the Adriatic Sea are derived by solving a constrained linear inverse problem. The results are verified against Global Positioning System (GPS) estimates at some locations. Constraints on the linear problem are represented by estimates of relative vertical land motion between TG couples. The solution of the linear inverse problem is valid as long as the same rates of absolute sea level rise are observed at the TG stations used to constrain the system. This requirement limits the applicability of the method with variable absolute sea level trends. The novelty of this study is that we tried to overcome such limitations, subtracting the absolute sea level change estimates observed by the altimeter from all relevant time series, but retaining the original short-term variability and associated errors. The vertical land motion (VLM) solution is compared to GPS estimates at three of the six TGs. The results show that there is reasonable agreement between the VLM rates derived from altimetry and TGs, and from GPS, considering the different periods used for the processing of VLM estimates from GPS. The solution found for the VLM rates is optimal in the least square sense, and no longer depends on the altimetric absolute sea level trend at the TGs. Values for the six TGs’ location in the Adriatic Sea during the period 1993–2018 vary from −1.41 ± 0.47 mm y−1 (National Research Council offshore oceanographic tower in Venice) to 0.93 ± 0.37 mm y−1 (Rovinj), while GPS solutions range from −1.59 ± 0.65 (Venice) to 0.10 ± 0.64 (Split) mm y−1. The absolute sea level rise, calculated as the sum of relative sea level change rate at the TGs and the VLM values estimated in this study, has a mean of 2.43 mm y−1 in the period 1974–2018 across the six TGs, a mean standard error of 0.80 mm y−1, and a sample dispersion of 0.18 mm y−1.

2020 ◽  
Vol 14 (3) ◽  
pp. 361-378
Author(s):  
V. B. Mendes ◽  
S. M. Barbosa ◽  
D. Carinhas

AbstractIn this study, we estimate vertical land motion for 35 stations primarily located along the coastline of Portugal and Spain, using GPS time series with at least eight years of observations. Based on this set of GPS stations, our results show that vertical land motion along the Iberian coastline is characterized, in general, by a low to moderate subsidence, ranging from −2.2 mm yr−1 to 0.4 mm yr−1, partially explained by the glacial isostatic adjustment geophysical signal. The estimates of vertical land motion are subsequently applied in the analysis of tide gauge records and compared with geocentric estimates of sea level change. Geocentric sea level for the Iberian Atlantic coast determined from satellite altimetry for the last three decades has a mean of 2.5 ± 0.6 mm yr−1, with a significant range, as seen for a subset of grid points located in the vicinity of tide gauge stations, which present trends varying from 1.5 mm yr−1 to 3.2 mm yr−1. Relative sea level determined from tide gauges for this region shows a high degree of spatial variability, that can be partially explained not only by the difference in length and quality of the time series, but also for possible undocumented datum shifts, turning some trends unreliable. In general, tide gauges corrected for vertical land motion produce smaller trends than satellite altimetry. Tide gauge trends for the last three decades not corrected for vertical land motion range from 0.3 mm yr−1 to 5.0 mm yr−1 with a mean of 2.6 ± 1.4 mm yr−1, similar to that obtained from satellite altimetry. When corrected for vertical land motion, we observe a reduction of the mean to ∼1.9 ± 1.4 mm yr−1. Actions to improve our knowledge of vertical land motion using space geodesy, such as establishing stations in co-location with tide gauges, will contribute to better evaluate sea level change and its impacts on coastal regions.


2021 ◽  
Author(s):  
Francesco De Biasio ◽  
Stefano Vignudelli

<p>Consistent long-term satellite-based data-sets of sea surface elevation exist nowadays to study sea level variability, globally and at regional scales. Two of them are suitable for climate-related studies: one produced in the framework of the European Space Agency (ESA)-funded Sea Level Climate Change Initiative (SL_CCI); the other offered by the European Copernicus Climate Change Service (C3S). Both data-sets cover the global ocean since 1993 to 2015 (SL_CCI) and to present (C3S) at spatial resolution of 0.25 x 0.25 degrees. The first is obtained by merging data from all the available satellite altimetry missions. The second one relies only on a couple of simultaneous altimetry missions at a time to provide stable long-term variability estimates of sea level, is constantly updated and has resolution 0.125 x 0.125 degrees in the Mediterranean Sea.<br>Previous studies have investigated the relationship between satellite-derived absolute sea level change rates and tide gauge observations of relative sea level change in littoral zones of the Mediterranean basin [Fenoglio-Mark, L., 2002; Fenoglio-Mark et al., 2012]. Other studies made use also of global positioning system measurements of vertical land motion in addition to tide gauge and satellite altimetry data [Rocco F.V., 2015; Zerbini et al., 2017]. Vignudelli et al., [2018] highlighted the difficulty of deriving spatially-consistent information on the sea level rates at regional scale in the Adriatic Sea. Other studies have claimed the possibility to merge locally isolated information into a coherent regional picture using a linear inverse problem approach [Wöppelmann and Marcos, 2012]: such approach has been successfully applied to a number of tide gauges in the Adriatic Sea [De Biasio et al., 2020]. The approach tested in the Adriatic Sea is going to be extended to the Mediterranean and major findings will be presented at conference.<br>The motivation of this study is that industrial areas are widely spread along the littoral zone of the southern Europe, and residential settlements are densely scattered along the coasts of the Mediterranean Sea. Not least, a strongly rooted seaside tourism is one of the main economic resources of the region, which is particularly exposed to the sea level variability of both natural and anthropogenic origin. A well known example of such a exposition is Venice (northern Italy) which has been recently hit by the second-highest tide in recorded history (November 2019), and is being protected against storm surges by the MOSE barrier since October 2020. Therefore, a re-analyses of the actual sea level rates with novel methodologies that take into account a better usage of all available observations is key to understand the future coastal sea level changes and their relative importance.</p><p>Fenoglio-Marc, L. 2002. DOI: 10.1016/S1474-7065(02)00084-0</p><p>Fenoglio-Marc, L.; Braitenberg, C.; Tunini, L. 2012. DOI: 10.1016/j.pce.2011.05.014</p><p>Rocco, F.V. Ph.D. Thesis, 2015. URI: https://amslaurea.unibo.it/id/eprint/10172</p><p>Zerbini, S.; Raicich, F.; Prati, C.M.; Bruni, S.; Conte, S.D.; Errico, M.; Santi, E. 2017. DOI: 10.1016/j.earscirev.2017.02.009</p><p>Vignudelli, S., De Biasio, F., Scozzari, A. Zecchetto, S., and Papa, A. 2019. DOI:10.1007/1345_2018_51</p><p>Wöppelmann, G. and Marcos, M. 2012. DOI: 10.1029/2011JC007469</p><p>De Biasio, F., Baldin, G. and Vignudelli, S. 2020. DOI:10.3390/jmse8110949</p>


2021 ◽  
Author(s):  
Milaa Murshan ◽  
Balaji Devaraju ◽  
Nagarajan Balasubramanian ◽  
Onkar Dikshit

<p>Satellite altimetry provides measurements of sea surface height of centimeter-level accuracy over open oceans. However, its accuracy reduces when approaching the coastal areas and over land regions. Despite this downside, altimetric measurements are still applied successfully in these areas through altimeter retracking processes. This study aims to calibrate and validate retracted sea level data of Envisat, ERS-2, Topex/Poseidon, Jason-1, 2, SARAL/AltiKa, Cryosat-2 altimetric missions near the Indian coastline. We assessed the reliability, quality, and performance of these missions by comparing eight tide gauge (TG) stations along the Indian coast. These are Okha, Mumbai, Karwar, and Cochin stations in the Arabian Sea, and Nagapattinam, Chennai, Visakhapatnam, and Paradip in the Bay of Bengal. To compare the satellite altimetry and TG sea level time series, both datasets are transformed to the same reference datum. Before the calculation of the bias between the altimetry and TG sea level time series, TG data are corrected for Inverted Barometer (IB) and Dynamic Atmospheric Correction (DAC). Since there are no prior VLM measurements in our study area, VLM is calculated from TG records using the same procedure as in the Technical Report NOS organization CO-OPS 065. </p><p>Keywords— Tide gauge, Sea level, North Indian ocean, satellite altimetry, Vertical land motion</p>


2021 ◽  
Author(s):  
Martin Horwath ◽  
Anny Cazenave ◽  

<p>Studies of the global sea-level budget (SLB) and ocean-mass budget (OMB) are essential to assess the reliability of our knowledge of sea-level change and its contributors. The SLB is considered closed if the observed sea-level change agrees with the sum of independently assessed steric and mass contributions. The OMB is considered closed if the observed ocean-mass change is compatible with the sum of assessed mass contributions. </p><p>Here we present results from the Sea-Level Budget Closure (SLBC_cci) project conducted in the framework of ESA’s Climate Change Initiative (CCI). We used data products from CCI projects as well as newly-developed products based on CCI products and on additional data sources. Our focus on products developed in the same framework allowed us to exercise a consistent uncertainty characterisation and its propagation to the budget closure analyses, where the SLB and the OMB are assessed simultaneously. </p><p>We present time series of global mean sea-level changes from satellite altimetry; new time series of the global mean steric component generated from Argo drifter data with incorporation of sea surface temperature data; time series of ocean-mass change derived from GRACE satellite gravimetry; time series of global glacier mass change from a global glacier model; time series of mass changes of the Greenland Ice Sheet and the Antarctic Ice Sheet both from satellite radar altimetry and from GRACE; as well as time series of land water storage change from the WaterGAP global hydrological model. Our budget analyses address the periods 1993–2016 (covered by the satellite altimetry records) and 2003–2016 (covered by GRACE and the Argo drifter system). In terms of the mean rates of change (linear trends), the SLB is closed within uncertainties for both periods, and the OMB, assessable for 2003–2016 only, is also closed within uncertainties. Uncertainties (1-sigma) arising from the combined uncertainties of the elements of the different budgets considered are between 0.26 mm/yr and 0.40 mm/yr, that is, on the order of 10% of the magnitude of global mean sea-level rise, which is 3.05 ± 0.24 mm/yr and 3.65 ± 0.26 mm/yr for 1993-2016 and 2003-2016, respectively. We also assessed the budgets on a monthly time series basis. The statistics of monthly misclosure agrees with the combined uncertainties of the budget elements, which amount to typically 2-3 mm for the 2003–2016 period. We discuss possible origins of the residual misclosure.</p>


2020 ◽  
Author(s):  
Muharrem Hilmi Erkoç ◽  
Uğur Doğan ◽  
Seda Özarpacı ◽  
Hasan Yildiz ◽  
Erdinç Sezen

<p>This study aims to estimate vertical land motion (VLM) at tide gauges (TG), located in the Mediterranean, Aegean and the Marmara Sea coasts of Turkey, from differences of multimission satellite altimetry and TG sea level time series. Initially, relative sea level trends are estimated at 7 tide gauges stations operated by the Turkish General Directorate of Mapping over the period 2001-2019. Subsequently, absolute sea level trends independent from VLM are computed from multimission satellite altimetry data over the same period. We have computed estimates of linear trends of difference time series between altimetry and tide gauge sea level after removing seasonal signals by harmonic analysis from each time series to estimate the vertical land motion (VLM) at tide gauges. Traditional way of VLM determination at tide gauges is to use GPS@TG or preferably CGPS@TG data. We therefore, processed these GPS data, collected over the years by several TG-GPS campaigns and by continuous GPS stations close to the TG processed by GAMIT/GLOBK software. Subsequently, the GPS and CGPS vertical coordinate time series are used to estimate VLM. These two different VLM estimates, one from GPS and CGPS coordinate time series and other from altimetry-TG sea level time series differences are compared.</p><p> </p><p><strong>Keywords: Vertical land motion, Sea Level Changes, Tide gauge, Satellite altimetry, GPS, CGPS </strong></p>


2011 ◽  
Vol 76 (3-4) ◽  
pp. 137-151 ◽  
Author(s):  
Itthi Trisirisatayawong ◽  
Marc Naeije ◽  
Wim Simons ◽  
Luciana Fenoglio-Marc

Author(s):  
D. Zhou ◽  
W. Sun ◽  
Y. Fu ◽  
X. Zhou

<p><strong>Abstract.</strong> The ground vertical movement of the tide gauges around the Bohai sea was firstly analyzed by using the observation data from 2009 to 2017 of the nine co-located GNSS stations. It was found that the change rate of ground vertical motion of four stations was in the same order of magnitude as the sea level change. In particular, the land subsidence rate of BTGU station reaches 11.47&amp;thinsp;mm/yr, which should be paid special attention to in the analysis of sea level change. Then combined with long-term tide gauges and the satellite altimetry results, the sea level changes in the Bohai sea and adjacent waters from 1993 to 2012 were analyzed. The relative and absolute sea level rise rates of the sea area are 3.81&amp;thinsp;mm/yr and 3.61&amp;thinsp;mm/yr, respectively, both are higher than the global average rate of change. At the same time, it is found that the vertical land motion of tide gauge stations is the main factor causing regional differences in relative sea level changes.</p>


2021 ◽  
Vol 15 (4) ◽  
pp. 45-58
Author(s):  
Katarzyna Pajak ◽  
Kamil Kowalczyk ◽  
Jānis Kaminskis ◽  
Magdalena Idzikowska

Tide gauge observations provide sea level relative to the Earth’s crust, while satellite altimetry measures sea level variations relative to the centre of the Earth’s mass. Local vertical land motion can be a significant contribution to the measured sea level change.Satellite altimetry was traditionally used to study the open ocean, but this technology is now being used over inland seas too.The difference of both observations can be used to estimate vertical crustal movement velocities along the sea coast. In this paper, vertical crustal movement velocities were investigated at tide gauge sites along the Adriatic Sea coast by analyzing differences between Tide Gauge (TG) and Satellite Altimetry (SA) observations. Furthermore, the estimated vertical motion rates were compared with those from nearby GNSS measurements.The study determines the practical relationships between these vertical crustal movements and those determined from unrelated data acquired from the neighbouring GNSS stations. The results show general consistence with the present geodynamics in the Adriatic Sea coastal zone.


2017 ◽  
Vol 167 ◽  
pp. 72-87 ◽  
Author(s):  
Susanna Zerbini ◽  
Fabio Raicich ◽  
Claudio Maria Prati ◽  
Sara Bruni ◽  
Sara Del Conte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document