scholarly journals Similar Features, Different Behaviors: A Comparative In Vitro Study of the Adipogenic Potential of Stem Cells from Human Follicle, Dental Pulp, and Periodontal Ligament

2021 ◽  
Vol 11 (8) ◽  
pp. 738
Author(s):  
Melissa D. Mercado-Rubio ◽  
Erick Pérez-Argueta ◽  
Alejandro Zepeda-Pedreguera ◽  
Fernando J. Aguilar-Ayala ◽  
Ricardo Peñaloza-Cuevas ◽  
...  

Dental tissue-derived mesenchymal stem cells (DT-MSCs) are a promising resource for tissue regeneration due to their multilineage potential. Despite accumulating data regarding the biology and differentiation potential of DT-MSCs, few studies have investigated their adipogenic capacity. In this study, we have investigated the mesenchymal features of dental pulp stem cells (DPSCs), as well as the in vitro effects of different adipogenic media on these cells, and compared them to those of periodontal ligament stem cells (PLSCs) and dental follicle stem cells (DFSCs). DFSC, PLSCs, and DPSCs exhibit similar morphology and proliferation capacity, but they differ in their self-renewal ability and expression of stemness markers (e.g OCT4 and c-MYC). Interestingly, DFSCs and PLSCs exhibited more lipid accumulation than DPSCs when induced to adipogenic differentiation. In addition, the mRNA levels of adipogenic markers (PPAR, LPL, and ADIPOQ) were significantly higher in DFSCs and PLSCs than in DPSCs, which could be related to the differences in the adipogenic commitment in those cells. These findings reveal that the adipogenic capacity differ among DT-MSCs, features that might be advantageous to increasing our understanding about the developmental origins and regulation of adipogenic commitment.

2015 ◽  
Vol 41 (9) ◽  
pp. 1462-1468 ◽  
Author(s):  
Yoonsun Cha ◽  
Mijeong Jeon ◽  
Hyo-Seol Lee ◽  
Seunghye Kim ◽  
Seong-Oh Kim ◽  
...  

2010 ◽  
Vol 31 (2) ◽  
pp. 117-124 ◽  
Author(s):  
Feng Pan ◽  
Rui Zhang ◽  
Guang Wang ◽  
Yin Ding

The existence of PDLSCs [PDL (periodontal ligament) stem cells] in PDL has been identified and such cells may function in periodontal reconstruction, including bone formation. Oestrogens/ERs (oestrogen receptors; ERα and ERβ) exert important effects in bone formation, however, the relationship between ERs and PDLSCs has not been established. In the present study, PDLSCs were isolated and assays for detecting stem-cell biomarkers and multipotential differentiation potential confirmed the validity of human PDLSCs. The results of RT–PCR (reverse transcription–PCR) and Western blotting showed that ERα and ERβ were expressed at higher levels in PDLSCs as compared with PDLCs (PDL cells), and 17β-oestradiol obviously induced the osteogenic differentiation of PDLSCs in vitro. Furthermore, a pan-ER inhibitor or lentivirus-mediated siRNA (small interfering RNA) targeting ERα or ERβ blocked the oestrogen-induced osteogenic differentiation of PDLSCs. The results indicate that both ERα and ERβ were involved in the process of osteogenic differentiation of PDLSCs.


2020 ◽  
Author(s):  
Xiaoyu Li ◽  
Bowen Zhang ◽  
Hong Wang ◽  
Xiaolu Zhao ◽  
Zijie Zhang ◽  
...  

Abstract Background: Periodontal ligament stem cells (PDLSCs) have many applications in the field of cytotherapy, tissue engineering, and regenerative medicine. However, the effect of age on the biological characteristics and immunoregulation of PDLSCs remains unclear.Methods: In this study, we compared PDLSCs isolated from young and elderly individuals. PDLSCs proliferation was analyzed by Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) staining, and apoptosis level was detected by Annexin V-PE/7-ADD staining. PDLSCs osteogenic/adipogenic differentiation potentials were assessed by alkaline phosphatase (ALP), Alizarin Red, Oil Red O staining and related quantitative analysis. PDLSCs immunoregulatory capacity was determined by EdU and Annexin V-PE/7-ADD staining. To explore its underlying mechanism, microarray, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), and western blot analyses were performed to detect differentially expressed genes and proteins in PDLSCs. Results: Our results demonstrated that with aging, the proliferation and osteogenic/adipogenic differentiation potential of PDLSCs decreased, whereas apoptosis of PDLSCs increased. Moreover, the immunosuppressive ability of PDLSCs decreased with aging. Compared with PDLSCs from young subjects, analysis of mRNA expression revealed an upregulation of CCND3 and RC3H2 , and a downregulation of Runx2, ALP, COL1A1, PPARγ2, CXCL12, FKBP1A, FKBP1B, NCSTN, P2RX7, PPP3CB, RIPK2, SLC11A1, and TP53 in those from elderly individuals. Furthermore, protein expression levels of Runx2, ALP, COL1A1, and PPARγ2 in the elderly group was decreased, whereas that of CCND3 increased. Conclusions: Taken together, aging influences biological and immunological characteristics of PDLSCs, and thus it is more appropriate to utilized PDLSCs from young individuals for tissue regeneration, post-aging treatment, and allotransplantation.


2020 ◽  
Author(s):  
Xiaoyu Li ◽  
Bowen Zhang ◽  
Hong Wang ◽  
Xiaolu Zhao ◽  
Zijie Zhang ◽  
...  

Abstract Background Periodontal ligament stem cells (PDLSCs) have many applications in the field of cytotherapy, tissue engineering, and regenerative medicine. However, the effect of age on the biological characteristics and immunoregulation of PDLSCs remains unclear. Methods In this study, we compared PDLSCs isolated from young and elderly individuals. PDLSCs proliferation was analyzed by Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) staining, and apoptosis level was detected by Annexin V-PE/7-ADD staining. PDLSCs osteogenic/adipogenic differentiation potentials were assessed by alkaline phosphatase (ALP), Alizarin Red, Oil Red O staining and related quantitative analysis. PDLSCs immunoregulatory capacity was determined by EdU and Annexin V-PE/7-ADD staining. To explore its underlying mechanism, microarray, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), and western blot analyses were performed to detect differentially expressed genes and proteins in PDLSCs. Results Our results demonstrated that with aging, the proliferation and osteogenic/adipogenic differentiation potential of PDLSCs decreased, whereas apoptosis of PDLSCs increased. Moreover, the immunosuppressive ability of PDLSCs decreased with aging. Compared with PDLSCs from young subjects, analysis of mRNA expression revealed an upregulation of CCND3 and RC3H2 , and a downregulation of Runx2, ALP, COL1A1, PPARγ2, CXCL12, FKBP1A, FKBP1B, NCSTN, P2RX7, PPP3CB, RIPK2, SLC11A1, and TP53 in those from elderly individuals. Furthermore, protein expression levels of Runx2, ALP, COL1A1, and PPARγ2 in the elderly group was decreased, whereas that of CCND3 increased. Conclusions Taken together, aging influences biological and immunological characteristics of PDLSCs, and thus it is more appropriate to utilized PDLSCs from young individuals for tissue regeneration, post-aging treatment, and allotransplantation.


2018 ◽  
Vol 19 (8) ◽  
pp. 2341 ◽  
Author(s):  
Veronica Lanza Cariccio ◽  
Domenico Scionti ◽  
Antonio Raffa ◽  
Renato Iori ◽  
Federica Pollastro ◽  
...  

Periodontal ligament mesenchymal stem cells (hPDLSCs), as well as all mesenchymal stem cells, show self-renewal, clonogenicity, and multi-tissue differentiation proprieties and can represent a valid support for regenerative medicine. We treated hPDLSCs with a combination of Moringin (MOR) and Cannabidiol (CBD), in order to understand if treatment could improve their survival and their in vitro differentiation capacity. Stem cells survival is fundamental to achieve a successful therapy outcome in the re-implanted tissue of patients. Through NGS transcriptome analysis, we found that combined treatment increased hPDLSCs survival, by inhibition of apoptosis as demonstrated by enhanced expression of anti-apoptotic genes and reduction of pro-apoptotic ones. Moreover, we investigated the possible involvement of PI3K/Akt/mTOR pathway, emphasizing a differential gene expression between treated and untreated cells. Furthermore, hPDLSCs were cultured for 48 h in the presence or absence of CBD and MOR and, after confirming the cellular viability through MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide) assay, we examined the presence of neuronal markers, through immunofluorescence analysis. We found an increased expression of Nestin and GAP43 (growth associated protein 43) in treated cells. In conclusion, hPDLSCs treated with Moringin and Cannabidiol showed an improved survival capacity and neuronal differentiation potential.


Sign in / Sign up

Export Citation Format

Share Document