scholarly journals Next Generation Sequencing As an Aid to Diagnosis and Treatment of an Unusual Pediatric Brain Cancer

2014 ◽  
Vol 4 (3) ◽  
pp. 402-411
Author(s):  
John Glod ◽  
Mihae Song ◽  
Archana Sharma ◽  
Rachana Tyagi ◽  
Roy Rhodes ◽  
...  
Diagnostics ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 962
Author(s):  
Dario de Biase ◽  
Matteo Fassan ◽  
Umberto Malapelle

Next-Generation Sequencing (NGS) allows for the sequencing of multiple genes at a very high depth of coverage [...]


2018 ◽  
Vol 109 (9) ◽  
pp. 2980-2985 ◽  
Author(s):  
Kuniko Sunami ◽  
Hideaki Takahashi ◽  
Katsuya Tsuchihara ◽  
Masayuki Takeda ◽  
Tatsuya Suzuki ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Mengfan Jiao ◽  
Xiang Deng ◽  
Hongfu Yang ◽  
Junqiang Dong ◽  
Jun Lv ◽  
...  

Nocardia genus is an aerobic, gram-positive, and opportunistic pathogen, which mainly affects cell-mediated immunosuppressed patients. Early diagnosis and treatment greatly improve prognosis. However, the limitation of golden standard-bacterial culture exists. Here, we report a 61-year-old male with pneumonia, sepsis and intermuscular abscesses induced by Nocardia farcinica. Venous blood culture reported negative results. Former improper diagnosis and treatment did not improve his condition. With the assistant of metagenomic next-generation sequencing, the pathogen was identified as Nocardia farcinica. He was then applied with accurate treatment and had a remarkable clinical and radiological improvement.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii469-iii469
Author(s):  
Subhi Talal Younes ◽  
Amanda Boudreaux ◽  
Kristin Weaver ◽  
Cynthia Karlson ◽  
Betty Herrington

Abstract INTRODUCTION Next generation sequencing (NGS) is an emerging technology which allows for in-depth analysis of pediatric brain tumors. NGS has particular use in the context of ambiguous or aggressive neoplasms, where it can be leveraged to discover novel drivers, inform pathologic classification, and direct targeted therapies. OBJECTIVE The objective of this case series was to utilize NGS technology to illuminate the biology of aggressive brain tumors with ambiguous pathologic features and clinically aggressive behavior. METHODS FFPE tumor tissue and matched germline DNA were subjected to whole exome sequencing (WES). Data were analyzed according to the GATK pipeline. RESULTS The first case is a 6-year-old male who presented with innumerable foci of leptomeningeal nodules throughout the neuroaxis. Original pathology was CNS embryonal tumor. WES identified loss of chromosome 1p and 16q with gain of 1q and amplification of MYC and OTX2 loci (cytogenetic aberrations characteristic of group 3 medulloblastoma) and a deleterious mutation in BCL7B, a known tumor suppressor gene. The second case is a 2-year-old female who presented with a parietal lobe mass diagnosed as high grade neuroepithelial tumor with C11orf95 translocation, but no RELA fusion. WES revealed loss of small region of chromosome 2p and mutations in IDH3G, TRAF2, and JMJD1C, suggesting novel targets for further study. CONCLUSIONS In both cases, NGS studies were able to shed light on the underlying tumor biology and/or refine the pathologic diagnosis. These data underscore the utility of applying NGS technology to study the biology of pediatric brain tumors.


Sign in / Sign up

Export Citation Format

Share Document