scholarly journals Land Use Changes in Iberian Peninsula 1990–2012

Land ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 99 ◽  
Author(s):  
David Fernández-Nogueira ◽  
Eduardo Corbelle-Rico

This work aims to provide a comprehensive, wall-to-wall analysis of land use/cover changes in the continental areas of Portugal and Spain between 1990 and 2012. This overall objective is developed into two main research questions: (1) Whether differences between the extent and prevalence of changes exist between both countries and (2) which are the hotspots of change (areas where a given land use/cover transition dominates the landscape) in each country. We used Corine Land Cover in three different points in time (1990, 2000, 2012) to explore eight characteristic land cover transitions and carried out a cluster analysis at LAU2 level (municipalities in Spain, parishes in Portugal) that allowed to identify the areas in which each transition was dominant. The main findings include the decline of agricultural area and the increase of urbanized and artificial covers in both countries, but different trends followed by forest cover, with an increase in Spain and a decrease in Portugal. At the same time, the spatial analysis provided an overview of the main gradients of change related to tensions between agricultural intensification–extensification, on the one hand, and deforestation–afforestation, on the other.

Author(s):  
Judith Chepkorir Koskey ◽  
George Morara Ogendi ◽  
Charles Mwithali M'Erimba ◽  
Geoffry Mukonambi Maina

The Njoro and Kamweti River catchments are productive catchments that have and continue to experience major land-use changes with consequences on land cover and the associated environmental resources. It is, therefore, crucial to understand the type of changes occurring, spatial patterns, and the rates at which these changes are occurring. In this study, we quantified the changes in land use and land cover that occurred between 1988 and 2019 identifying areas of change and the average annual rate of change. Thematic Mappers (TM) and Enhanced Thematic Mappers Plus (ETM +) and Sentinel images were obtained for 1988 and 2019. Ground truthing was carried out to enable us to verify the accuracy of the remotely sensed data using in-situ observations to refine the classification output. The results obtained indicated that both catchments have experienced intense land-use changes but at different levels. Njoro River catchment’s forest cover and shrubland had decreased at a rate of 6.06 Km2/year and 0.92 Km2/year respectively and the most increase was recorded in farmlands (3.11 Km2/year) as the other land use classes also increased. In the Kamweti River catchment, forest cover showed a decrease at a rate of 0.21 Km2/year, and farmlands also a slight decrease of 0.1 Km2/year while the other land cover classes increased in area coverage during the period 1988-2019.  The changes in land use and land cover were attributed to increased demand for food and housing and thus continued degrading the two catchments especially the Njoro River catchment. Results obtained indicated that anthropogenic activities were the major contributing factors to the changes in Land Use Land Cover experienced in both catchments. We recommend continued analysis of the trends and rates of land cover conversions owing to their potential use by development planners. 


Author(s):  
Stanley Atonya ◽  
Luke OLANG ◽  
Lewis Morara

A comprehensive undertanding of land-use/cover(LUC) change processes, their trends and future trajectories is essential for the development of sustainable land-use management plans. While contemporay tools can today be employed to monitor historical land-cover changes, prediction of future change trajectories in most rural agro-ecological landscapes remains a challenge. This study evaluated potential LUC changes in the transboundary Sio-Malaba-Malakisi River Basin of Kenya and Uganda for the period 2017-2047. The land use change drivers were obtained through a rigorous fieldwork procedure and the Logistic Regression Model (LGM) to establish key factors for the simulation. The CLUE-S model was subsequently adapted to explore future LUC change trajectories under different scenarios. The model was validated using historical land cover maps for the period of 2008 and 2017, producing overall accuracy result of 85.7% and a Kappa coefficient of 0.78. The spatial distribution of vegetation cover types could be explained partially by proximate factors like soil cation exchange capacity, soil organic carbon and soil pH. On the other hand, built-up areas were mainly influenced by population density. Under the afforestation scenario, areas under forest cover expanded further occupying 54.7% of the basin. Conversely, under the intense agriculture scenario, cropland and pasture cover types occupied 78% of the basin. However, in a scenario where natural forest and wetlands were protected, cropland and pasture only expanded by 74%. The study successfully outlined proximate land cover change drivers, including potential future changes and could be used to support the development of sustainable long-term transboundary land-use plans and policy.


2020 ◽  
Vol 13 (7) ◽  
pp. 3203-3220 ◽  
Author(s):  
Lei Ma ◽  
George C. Hurtt ◽  
Louise P. Chini ◽  
Ritvik Sahajpal ◽  
Julia Pongratz ◽  
...  

Abstract. Anthropogenic land-use and land-cover change activities play a critical role in Earth system dynamics through significant alterations to biogeophysical and biogeochemical properties at local to global scales. To quantify the magnitude of these impacts, climate models need consistent land-cover change time series at a global scale, based on land-use information from observations or dedicated land-use change models. However, a specific land-use change cannot be unambiguously mapped to a specific land-cover change. Here, nine translation rules are evaluated based on assumptions about the way land-use change could potentially impact land cover. Utilizing the Global Land-use Model 2 (GLM2), the model underlying the latest Land-Use Harmonization dataset (LUH2), the land-cover dynamics resulting from land-use change were simulated based on multiple alternative translation rules from 850 to 2015 globally. For each rule, the resulting forest cover, carbon density and carbon emissions were compared with independent estimates from remote sensing observations, U.N. Food and Agricultural Organization reports, and other studies. The translation rule previously suggested by the authors of the HYDE 3.2 dataset, that underlies LUH2, is consistent with the results of our examinations at global, country and grid scales. This rule recommends that for CMIP6 simulations, models should (1) completely clear vegetation in land-use changes from primary and secondary land (including both forested and non-forested) to cropland, urban land and managed pasture; (2) completely clear vegetation in land-use changes from primary forest and/or secondary forest to rangeland; (3) keep vegetation in land-use changes from primary non-forest and/or secondary non-forest to rangeland. Our analysis shows that this rule is one of three (out of nine) rules that produce comparable estimates of forest cover, vegetation carbon and emissions to independent estimates and also mitigate the anomalously high carbon emissions from land-use change observed in previous studies in the 1950s. According to the three translation rules, contemporary global forest area is estimated to be 37.42×106 km2, within the range derived from remote sensing products. Likewise, the estimated carbon stock is in close agreement with reference biomass datasets, particularly over regions with more than 50 % forest cover.


Land ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 16 ◽  
Author(s):  
Achim Ahrens ◽  
Seán Lyons

In this article, we first summarise trends of land use changes and urbanisation in Ireland since 1990 using data from the Corine Land Cover program. In doing so, we compare the developments in Ireland with other European countries. Second, we propose a statistical test for the presence of sprawl using conditional and unconditional convergence tests. The two-part empirical analysis allows us to establish that Ireland has experienced a substantial loss of non-urban land in recent decades. Furthermore, a significant share of urban land use has been extended to remote areas, thereby exacerbating sprawl.


Author(s):  
Pauline Violanda Hostalero ◽  
Nguyen Thi Ha

Land use change has been assessed widely using Remote Sensing (RS) and Geographic Information System (GIS) techniques. The analysis of land use change was done by detecting land cover change. A study about land cover change, along with the self-employed workers’ perception towards changes between 2007 and 2017 were carried out in Nam Tu Liem District, Hanoi, Vietnam. The result of the study shows that the built-up lands have increased and remained to be the dominant land cover types in 2017. The agriculture has been declining mainly due to conversion into built-up land. Other land type including water, bare land, and vegetation have shown slight changes throughout the years. Overall changes from 2007 to 2017 shown that built-up land gained the most and agriculture land lost the most. On the other hand, the perception study’s major findings indicate that about two-thirds (69%) of respondents are aware of changes. However, almost one-third (31%) are unaware of the said topic. There are several factors that may affect the awareness of self-employed workers which will be cursory discussed in the study. This study in Nam Tu Liem District is a first step to determine and understand the major driving factors and their impacts on the land use changes in the area. A detailed land use/cover change study and a larger population size for perception studies are recommended in order for the government to formulate policies to achieve sustainable development.      


2021 ◽  
Vol 33 ◽  
pp. 51-78
Author(s):  
Georgi Jelev ◽  
Dilyana Stefanova ◽  
Petar Stefanov

The Corine Land Cover (CLC) is a digital data about land cover which is distributed into 44 classes whereas for the territory of Bulgaria the CLC classes are 36. The minimal mapping unit is 25 hectares (for 2D objects and 100 m for linear objects). Data sets for the years 1990, 2000, 2006, 2012, and 2018 are available, as well as for the changes which have occurred between each couple of years (1990–2000, 2000–2006, 2006–2012, and 2012–2018). The great data sets provide to track over a nearly 30-year period of land cover changes in model karst regions which are strongly vulnerable to anthropogenic and natural influences. This paper considers the changes in the land cover types on the Devetashko plateau – a typical karst plateau in North Bulgaria. Land cover and land use changes affect directly the processes of modern karst-genesis, the soil-vegetation cover, the quantity and quality of underground karst waters.


Author(s):  
Iwona Cieślak ◽  
Karol Szuniewicz ◽  
Katarzyna Pawlewicz ◽  
Szymon Czyża

2018 ◽  
Vol 59 (1) ◽  
pp. 65-79
Author(s):  
Katarzyna Nikorowicz-Zatorska

Abstract The present paper focuses on spatial management regulations in order to carry out investment in the field of airport facilities. The construction, upgrades, and maintenance of airports falls within the area of responsibility of local authorities. This task poses a great challenge in terms of organisation and finances. On the one hand, an active airport is a municipal landmark and drives local economic, social and cultural development, and on the other, the scale of investment often exceeds the capabilities of local authorities. The immediate environment of the airport determines its final use and prosperity. The objective of the paper is to review legislation that affects airports and the surrounding communities. The process of urban planning in Lodz and surrounding areas will be presented as a background to the problem of land use management in the vicinity of the airport. This paper seeks to address the following questions: if and how airports have affected urban planning in Lodz, does the land use around the airport prevent the development of Lodz Airport, and how has the situation changed over the time? It can be assumed that as a result of lack of experience, land resources and size of investments on one hand and legislative dissonance and peculiar practices on the other, aviation infrastructure in Lodz is designed to meet temporary needs and is characterised by achieving short-term goals. Cyclical problems are solved in an intermittent manner and involve all the municipal resources, so there’s little left to secure long-term investments.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Aman Srivastava ◽  
Pennan Chinnasamy

AbstractThe present study, for the first time, examined land-use land cover (LULC), changes using GIS, between 2000 and 2018 for the IIT Bombay campus, India. Objective was to evaluate hydro-ecological balance inside campus by determining spatio-temporal disparity between hydrological parameters (rainfall-runoff processes), ecological components (forest, vegetation, lake, barren land), and anthropogenic stressors (urbanization and encroachments). High-resolution satellite imageries were generated for the campus using Google Earth Pro, by manual supervised classification method. Rainfall patterns were studied using secondary data sources, and surface runoff was estimated using SCS-CN method. Additionally, reconnaissance surveys, ground-truthing, and qualitative investigations were conducted to validate LULC changes and hydro-ecological stability. LULC of 2018 showed forest, having an area cover of 52%, as the most dominating land use followed by built-up (43%). Results indicated that the area under built-up increased by 40% and playground by 7%. Despite rapid construction activities, forest cover and Powai lake remained unaffected. This anomaly was attributed to the drastically declining barren land area (up to ~ 98%) encompassing additional construction activities. Sustainability of the campus was demonstrated with appropriate measures undertaken to mitigate negative consequences of unwarranted floods owing to the rise of 6% in the forest cover and a decline of 21% in water hyacinth cover over Powai lake. Due to this, surface runoff (~ 61% of the rainfall) was observed approximately consistent and being managed appropriately despite major alterations in the LULC. Study concluded that systematic campus design with effective implementation of green initiatives can maintain a hydro-ecological balance without distressing the environmental services.


Sign in / Sign up

Export Citation Format

Share Document