scholarly journals CRISPRi as a Tool to Repress Multiple Copies of Extracellular Polymeric Substances (EPS)-Related Genes in the Cyanobacterium Synechocystis sp. PCC 6803

Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1198
Author(s):  
Marina Santos ◽  
Catarina C. Pacheco ◽  
Lun Yao ◽  
Elton P. Hudson ◽  
Paula Tamagnini

The use of the versatile cyanobacterial extracellular polymeric substances (EPS) for biotechnological/biomedical applications implies an extensive knowledge of their biosynthetic pathways to improve/control polymer production yields and characteristics. The multiple copies of EPS-related genes, scattered throughout cyanobacterial genomes, adds another layer of complexity, making these studies challenging and time-consuming. Usually, this issue would be tackled by generating deletion mutants, a process that in cyanobacteria is also hindered by the polyploidy. Thus, the use of the CRISPRi multiplex system constitutes an efficient approach to addressing this redundancy. Here, three putative Synechocystis sp. PCC 6803 kpsM homologues (slr0977, slr2107, and sll0574) were repressed using this methodology. The characterization of the 3-sgRNA mutant in terms of fitness/growth and total carbohydrates, released and capsular polysaccharides, and its comparison with previously generated single knockout mutants pointed towards Slr0977 being the key KpsM player in Synechocystis EPS production. This work validates CRISPRi as a powerful tool to unravel cyanobacterial complex EPS biosynthetic pathways expediting this type of studies.

1991 ◽  
Vol 266 (17) ◽  
pp. 11111-11115
Author(s):  
M. Ikeuchi ◽  
B. Eggers ◽  
G.Z. Shen ◽  
A. Webber ◽  
J.J. Yu ◽  
...  

2011 ◽  
Vol 435 (3) ◽  
pp. 733-742 ◽  
Author(s):  
Pitter F. Huesgen ◽  
Helder Miranda ◽  
XuanTam Lam ◽  
Manuela Perthold ◽  
Holger Schuhmann ◽  
...  

Cyanobacteria require efficient protein-quality-control mechanisms to survive under dynamic, often stressful, environmental conditions. It was reported that three serine proteases, HtrA (high temperature requirement A), HhoA (HtrA homologue A) and HhoB (HtrA homologue B), are important for survival of Synechocystis sp. PCC 6803 under high light and temperature stresses and might have redundant physiological functions. In the present paper, we show that all three proteases can degrade unfolded model substrates, but differ with respect to cleavage sites, temperature and pH optima. For recombinant HhoA, and to a lesser extent for HtrA, we observed an interesting shift in the pH optimum from slightly acidic to alkaline in the presence of Mg2+ and Ca2+ ions. All three proteases formed different homo-oligomeric complexes with and without substrate, implying mechanistic differences in comparison with each other and with the well-studied Escherichia coli orthologues DegP (degradation of periplasmic proteins P) and DegS. Deletion of the PDZ domain decreased, but did not abolish, the proteolytic activity of all three proteases, and prevented substrate-induced formation of complexes higher than trimers by HtrA and HhoA. In summary, biochemical characterization of HtrA, HhoA and HhoB lays the foundation for a better understanding of their overlapping, but not completely redundant, stress-resistance functions in Synechocystis sp. PCC 6803.


Plant Science ◽  
1996 ◽  
Vol 115 (2) ◽  
pp. 261-266 ◽  
Author(s):  
Yoshihiro Narusaka ◽  
Akio Murakami ◽  
Mari Saeki ◽  
Hirokazu Kobayashi ◽  
Kimiyuki Satoh

2015 ◽  
Vol 6 ◽  
Author(s):  
Chun-Hsien Hung ◽  
Kaichiro Endo ◽  
Koichi Kobayashi ◽  
Yuki Nakamura ◽  
Hajime Wada

2008 ◽  
Vol 98 (1-3) ◽  
pp. 293-302 ◽  
Author(s):  
Tatsuya Tomo ◽  
Seiji Akimoto ◽  
Tohru Tsuchiya ◽  
Michitaka Fukuya ◽  
Kazunori Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document