scholarly journals Comparative Efficacies of Collagen-Based 3D Printed PCL/PLGA/β-TCP Composite Block Bone Grafts and Biphasic Calcium Phosphate Bone Substitute for Bone Regeneration

Materials ◽  
2017 ◽  
Vol 10 (4) ◽  
pp. 421 ◽  
Author(s):  
Kyoung-Sub Hwang ◽  
Jae-Won Choi ◽  
Jae-Hun Kim ◽  
Ho Chung ◽  
Songwan Jin ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3588
Author(s):  
Franciska Oberdiek ◽  
Carlos Ivan Vargas ◽  
Patrick Rider ◽  
Milijana Batinic ◽  
Oliver Görke ◽  
...  

(1) Background: The aim of this study was examining the ex vivo and in vivo properties of a composite made from polycaprolactone (PCL) and biphasic calcium phosphate (BCP) (synprint, ScientiFY GmbH) fabricated via fused deposition modelling (FDM); (2) Methods: Scaffolds were tested ex vivo for their mechanical properties using porous and solid designs. Subcutaneous implantation model analyzed the biocompatibility of PCL + BCP and PCL scaffolds. Calvaria implantation model analyzed the osteoconductive properties of PCL and PCL + BCP scaffolds compared to BCP as control group. Established histological, histopathological and histomorphometrical methods were performed to evaluate new bone formation.; (3) Results Mechanical testing demonstrated no significant differences between PCL and PCL + BCP for both designs. Similar biocompatibility was observed subcutaneously for PCL and PCL + BCP scaffolds. In the calvaria model, new bone formation was observed for all groups with largest new bone formation in the BCP group, followed by the PCL + BCP group, and the PCL group. This finding was influenced by the initial volume of biomaterial implanted and remaining volume after 90 days. All materials showed osteoconductive properties and PCL + BCP tailored the tissue responses towards higher cellular biodegradability. Moreover, this material combination led to a reduced swelling in PCL + BCP; (4) Conclusions: Altogether, the results show that the newly developed composite is biocompatible and leads to successful osteoconductive bone regeneration. The new biomaterial combines the structural stability provided by PCL with bioactive characteristics of BCP-based BSM. 3D-printed BSM provides an integration behavior in accordance with the concept of guided bone regeneration (GBR) by directing new bone growth for proper function and restoration.



2020 ◽  
Vol 08 (06) ◽  
pp. 8-30
Author(s):  
Miguel Ángel Garcés-Villalá ◽  
Sergio David Rico ◽  
Sergio Gustavo Nazar ◽  
Mariano Escudero-Pinel ◽  
Víctor Galván-Josa ◽  
...  


2020 ◽  
Vol 50 (1) ◽  
pp. 14 ◽  
Author(s):  
Inpyo Hong ◽  
Alharthi Waleed Khalid ◽  
Hyung-Chul Pae ◽  
Jae-Kook Cha ◽  
Jung-Seok Lee ◽  
...  


Author(s):  
Pluta Klaudia ◽  
Walczyk Dorota ◽  
Sobczak-Kupiec Agnieszka ◽  
Malina Dagmara ◽  
Tyliszczak Bozena


2021 ◽  
Author(s):  
Alessia Longoni ◽  
Jun Li ◽  
Gabriella C.J. Lindberg ◽  
Jelena Rnjak-Kovacina ◽  
Lyn M. Wise ◽  
...  

Abstract There remains a critical need to develop new technologies and materials that can meet the demands of treating large bone defects. The advancement of 3-dimensional (3D) printing technologies has allowed the creation of personalized and customized bone grafts, with specific control in both macro- and micro-architecture, and desired mechanical properties. Nevertheless, the biomaterials used for the production of these bone grafts often possess poor biological properties. The incorporation of growth factors (GFs), which are the natural orchestrators of the physiological healing process, into 3D printed bone grafts, represents a promising strategy to achieve the bioactivity required to enhance bone regeneration. In this review, the possible strategies used to incorporate GFs to 3D printed constructs are presented with a specific focus on bone regeneration. In particular, the strengths and limitations of different methods, such as physical and chemical cross-linking, which are currently used to incorporate GFs to the engineered constructs are critically reviewed. Different strategies used to present one or more GFs to achieve simultaneous angiogenesis and vasculogenesis for enhanced bone regeneration are also covered in this review. In addition, the possibility of combining several manufacturing approaches to fabricate hybrid constructs, which better mimic the complexity of biological niches, is presented. Finally, the clinical relevance of these approaches and the future steps that should be taken are discussed.



2019 ◽  
Vol 99 ◽  
pp. 1058-1066 ◽  
Author(s):  
Mirana Taz ◽  
Preeti Makkar ◽  
Khan Mohammad Imran ◽  
D.W. Jang ◽  
Yong-Sik Kim ◽  
...  


2019 ◽  
Vol 30 (4) ◽  
pp. 1308-1313
Author(s):  
Ozge Doganay ◽  
Mehmet Tugrul ◽  
Vakur Olgac ◽  
Belir Atalay




2007 ◽  
Vol 361-363 ◽  
pp. 119-122 ◽  
Author(s):  
J.H. Lim ◽  
J.H. Park ◽  
Eui Kyun Park ◽  
Hae Jung Kim ◽  
Il Kyu Park ◽  
...  

An appropriate scaffold, which provides structural support for transplanted cells and acts as a vehicle for the delivery of biologically active molecules, is critical for tissue engineering. We developed a fully interconnected globular porous biphasic calcium phosphate ceramic scaffold by adopting a foaming method, and evaluated its efficiency as a bone substitute and a scaffold for bone tissue engineering by in vitro and in vivo biocompatible analysis and its osteogenic healing capacity in rat tibial bone defects. They have spherical pores averaging 400um in diameter and interconnecting interpores averaging 70um in diameter with average 85% porosity. They elicited no cytotoxicity and noxious effect on cellular proliferation and osteoblastic differentiation during the cell-scaffold construct formation. Also the bone defects grafted with fully interconnected globular porous biphasic calcium phosphate ceramic blocks revealed excellent bone healing within 3 weeks. These findings suggest that the fully interconnected porous biphasic calcium phosphate scaffold formed by the foaming method can be a promising bone substitute and a scaffold for bone tissue engineering.



Sign in / Sign up

Export Citation Format

Share Document