scholarly journals Beam Diameter Dependence of Performance in Thick-Layer and High-Power Selective Laser Melting of Ti-6Al-4V

Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1237 ◽  
Author(s):  
Wentian Shi ◽  
Yude Liu ◽  
Xuezhi Shi ◽  
Yanjun Hou ◽  
Peng Wang ◽  
...  

A 400 W high-power laser was used to fabricate 200-µm-thick Ti-6Al-4V samples to evaluate the effects of small (50 μm) and large (200 μm) beam diameter on density, microstructure and mechanical properties. A series of single-track experiments demonstrated that it was challenging for the small-beam laser to fabricate smooth and defect-free scan tracks. A larger beam diameter efficiently avoided process instability and provided a more stable and uniform melt pool. By increasing the beam diameter, the density of multilayer samples reached 99.95% of the theoretical value, which is much higher than that achieved with the small beam diameter. However, it was difficult to completely eliminate defects due to serious spatter and evaporation. Moreover, all of the generated samples had relatively coarse surfaces. For the large beam diameter of 200 µm, the optimal yield strength, ultimate tensile strength and elongation were 1150 MPa, 1200 MPa and 8.02%, respectively. In comparison, the small beam diameter of 50 µm resulted in values of 1035 MPa, 1100 MPa and 5.91%, respectively. Overall, the large-diameter laser is more suitable for high-power selective laser melting (SLM) technology, especially for thick layers.

2009 ◽  
Vol 131 (7) ◽  
Author(s):  
A. V. Gusarov ◽  
I. Yadroitsev ◽  
Ph. Bertrand ◽  
I. Smurov

A model for coupled radiation transfer and thermal diffusion is proposed, which provides a local temperature field. Single-line scanning of a laser beam over a thin layer of metallic powder placed on a dense substrate of the same material is studied. Both the laser beam diameter and the layer thickness are about 50 μm. The typical scanning velocity is in the range of 10–20 cm/s. An effective volumetric heat source is estimated from laser radiation scattering and absorption in a powder layer. A strong difference in thermal conductivity between the powder bed and dense material is taken into account. The above conditions correspond to the technology of selective laser melting that is applied to build objects of complicated shape from metallic powder. Complete remelting of the powder in the scanned zone and its good adhesion to the substrate ensure fabrication of functional parts with mechanical properties close to the ones of the wrought material. Experiments with single-line melting indicate that an interval of scanning velocities exists, where the remelted tracks are uniform. The tracks become “broken” if the scanning velocity is outside this interval. This is extremely undesirable and referred to as the “balling” effect. The size and the shape of the melt pool and the surface of the metallurgical contact of the remelted material to the substrate are analyzed in relation to the scanning velocity. The modeling results are compared with experimental observation of laser tracks. The experimentally found balling effect at scanning velocities above ∼20 cm/s can be explained by the Plateau–Rayleigh capillary instability of the melt pool. Two factors destabilize the process with increasing the scanning velocity: increasing the length-to-width ratio of the melt pool and decreasing the width of its contact with the substrate.


2012 ◽  
Vol 33 (2) ◽  
pp. 166-174 ◽  
Author(s):  
Takayuki Nakamoto ◽  
Nobuhiko Shirakawa ◽  
Naruaki Shinomiya ◽  
Haruyuki Inui

2021 ◽  
Vol 68 ◽  
pp. 347-355
Author(s):  
Qihang Fang ◽  
Zhenbiao Tan ◽  
Hui Li ◽  
Shengnan Shen ◽  
Sheng Liu ◽  
...  

2019 ◽  
Vol 25 ◽  
pp. 347-356 ◽  
Author(s):  
Sam Coeck ◽  
Manisha Bisht ◽  
Jan Plas ◽  
Frederik Verbist

2021 ◽  
Vol 45 (1) ◽  
pp. 1-10
Author(s):  
Arnold Mauduit ◽  
Hervé Gransac ◽  
Sébastien Pillot

Various selective laser melting (SLM) configurations (8 in all) were tested on aluminum alloy AlSi7Mg0.6 by making single tracks on parallelepipeds specimens. We used an energy balance as a means of connecting the machine parameters (power, speed, etc.) of the 8 configurations to the morphology (geometry) of the single tracks. On this basis, we correlated the width, depth and especially the section area of the melt pool (single track) to the linear energy density. We were also able to assess the absorption coefficient of the aluminum alloy AlSi7Mg0.6 as a function of the temperature. The study was then focused on the microstructure and the possible impacts on the material properties including on the mechanical characteristics and the anisotropy observed in literature based on the build direction. Evidence suggests that the Hall-Petch relation can be used to explain this anisotropy. The thermal analysis highlighted two laser operating modes: the keyhole mode and the conduction mode. These modes have also been described via the morphology of the single tracks. Finally, a comparison between Rosenthal’s theoretical model (in the case of the conduction mode) and actual conditions was proposed by the obtained geometry of the single tracks as well as the cooling speeds calculated and measured using the dendrite arm spacing (DAS). The maximum temperatures achieved were also assessed by Rosenthal’s theoretical model which made it possible to explain the evaporation of some chemical elements during the manufacturing of the aluminum alloy through SLM.


2019 ◽  
Vol 264 ◽  
pp. 21-31 ◽  
Author(s):  
Olivier Andreau ◽  
Imade Koutiri ◽  
Patrice Peyre ◽  
Jean-Daniel Penot ◽  
Nicolas Saintier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document