scholarly journals Dislocation Densities and Velocities within the γ Channels of an SX Superalloy during In Situ High-Temperature Creep Tests

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1527 ◽  
Author(s):  
Thomas Schenk ◽  
Roxane Trehorel ◽  
Laura Dirand ◽  
Alain Jacques

The high-temperature creep behavior of a rafted [001] oriented AM1 Ni-based single crystal superalloy was investigated during in situ creep tests on synchrotrons. Experiments were performed at constant temperatures under variable applied stress in order to study the response (plastic strain, load transfer) to stress jumps. Using two different diffraction techniques in transmission (Laue) geometry, it was possible to measure the average lattice parameters of both the γ matrix and the γ ′ rafts in the [100] direction at intervals shorter than 300 s. The absolute precision with both diffraction techniques of the constrained transverse mismatch (in the rafts’ plane) is about 10−5. After stress jumps, special attention is given to the evolution of plastic strain within the γ channels. The relaxation of the Von Mises stress at leveled applied stress shows evidence of dislocation multiplication within the γ channels. From the analysis, we showed an interaction between plastic stress and dislocation density of the γ phase.

2020 ◽  
Vol 36 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Daniele Barbera ◽  
Haofeng Chen

ABSTRACTStructural integrity plays an important role in any industrial activity, due to its capability of assessing complex systems against sudden and unpredicted failures. The work here presented investigates an unexpected new mechanism occurring in structures subjected to monotonic and cyclic loading at high temperature creep condition. An unexpected accumulation of plastic strain is observed to occur, within the high-temperature creep dwell. This phenomenon has been observed during several full inelastic finite element analyses. In order to understand which parameters make possible such behaviour, an extensive numerical study has been undertaken on two different notched bars. The notched bar has been selected due to its capability of representing a multiaxial stress state, which is a practical situation in real components. Two numerical examples consisting of an axisymmetric v-notch bar and a semi-circular notched bar are considered, in order to investigate different notches severity. Two material models have been considered for the plastic response, which is modelled by both Elastic-Perfectly Plastic and Armstrong-Frederick kinematic hardening material models. The high-temperature creep behaviour is introduced using the time hardening law. To study the problem several results are presented, as the effect of the material model on the plastic strain accumulation, the effect of the notch severity and the mesh element type and sensitivity. All the findings further confirm that the phenomenon observed is not an artefact but a real mechanism, which needs to be considered when assessing off-design condition. Moreover, it might be extremely dangerous if the cyclic loading condition occurs at such a high loading level.


2020 ◽  
Vol 54 (20) ◽  
pp. 2663-2676
Author(s):  
Henry A Colorado ◽  
Elkin I Gutiérrez-Velásquez ◽  
Clem Hiel

This paper presented the cantilever beam experiments and the method for creep in chemically bonded ceramics reinforced with glass, carbon, and basalt unidirectional fibers. The ceramic composite samples were fabricated by mixing wollastonite powder and phosphoric acid, through the resonant acoustic mixing technique. The reinforced fibers were added via pultrusion process. The manufactured materials were exposed to high temperature creep tests at 600, 800 and 1000℃, with an annealing time of 1 h, all in air environment. Some examples of real large-scale structures made manually by a company were also included. In order to understand the microstructure, X-ray diffraction and scanning electron microscopy analysis were included. The presented method is simple and can be used in any inorganic ceramic slurry types, such as geopolymers, phosphate cements, clay-based materials, or Portland cement composites. The sample response in high temperature creep experiments was analyzed with a new but very simple technique, and modeled using finite element analysis over all compositions. Results revealed that fibers have a significant effect on the composite creep when compared to the ceramic without reinforcement, and particularly carbon fibers showed a quite interested effect in reducing the creep effects. Results show the limit of the materials under conditions typically found in fires and other extreme environments.


2018 ◽  
Vol 789 ◽  
pp. 182-186
Author(s):  
Jin Ping Pan ◽  
Shu Heng Tu ◽  
Ding Jun Chu ◽  
Xin Wei Zhu ◽  
Bin Hu ◽  
...  

A progressive increase of plant efficiency calls for new requirements of heat-resistantsteels used in the boiler and piping systems. In this paper, high-temperature creep behavior of T23and T24 steels were studied. Creep tests over a long period of time have been conducted for bothsteels at different temperatures. The creep mechanisms of the two steels have been clarified byanalyzing the minimum creep rate versus stress data. Besides, the creep rupture data from the creeptests were in good accordance with theoretical simulation on the basis of the CDM model over a longtime. Creep temperature has great effects on the rupture strength of the two steels. By creep ruptureexperiments and appropriate modelling, the high-temperature creep behavior can be well described.


2012 ◽  
Vol 43 (13) ◽  
pp. 5067-5078 ◽  
Author(s):  
X. F. Zhang ◽  
H. Terasaki ◽  
Y. Komizo ◽  
Y. Murakami ◽  
K. Yasuda

Sign in / Sign up

Export Citation Format

Share Document