glass carbon
Recently Published Documents


TOTAL DOCUMENTS

406
(FIVE YEARS 129)

H-INDEX

29
(FIVE YEARS 6)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 482
Author(s):  
Kinga Korniejenko ◽  
Beata Figiela ◽  
Celina Ziejewska ◽  
Joanna Marczyk ◽  
Patrycja Bazan ◽  
...  

The aim of this article was to analyze the fracture behavior of geopolymer composites based on fly ash or metakaolin with fine aggregate and river sand, with three types of reinforcement: glass, carbon, and aramid fiber, at three different temperatures, approximately: 3 °C, 20 °C, and 50 °C. The temperatures were selected as a future work temperature for composites designed for additive manufacturing technology. The main research method used was bending strength tests in accordance with European standard EN 12390-5. The results showed that the addition of fibers significantly improved the bending strength of all composites. The best results at room temperature were achieved for the metakaolin-based composites and sand reinforced with 2% wt. aramid fiber—17 MPa. The results at 50 °C showed a significant decrease in the bending strength for almost all compositions, which are unexpected results, taking into account the fact that geopolymers are described as materials dedicated to working at high temperatures. The test at low temperature (ca. 3 °C) showed an increase in the bending strength for almost all compositions. The grounds of this type of behavior have not been clearly stated; however, the likely causes of this are discussed.


2022 ◽  
Vol 23 (1) ◽  
pp. 339-348
Author(s):  
Santhosh priya Karjala ◽  
Vijay Kumar Kuttynadar Rajammal ◽  
Suresh Gopi ◽  
Rajesh Ravi ◽  
Devanathan Chockalingam ◽  
...  

The main objective of this study is to compare the interpenetrating polymer networks’ (IPNs) physical strengths with different variants of fibers. In this study, E-glass, carbon, and a combination of E-glass and carbon fiber (hybrid) have been taken as the reinforcement. Similarly, three combinations of the IPNs were chosen as the matrix material, namely epoxy / polyurethane (EP), vinyl ester / polyurethane (VP) and epoxy/vinyl ester (EV) as IPN blends. In order to thoroughly understand the physical characteristics of the combination of blends and fibers, nine variants (laminates) were fabricated: combinations of epoxy / polyurethane / E-glass (EPG), epoxy / polyurethane / carbon (EPC), epoxy / vinyl ester / glass / carbon (EPGC-hybrid), vinyl ester / polyurethane / glass (VPG), vinyl ester / polyurethane / carbon (VPC), vinyl ester / polyurethane / glass / carbon (VPGC), epoxy / vinyl ester / glass (EVG), epoxy / vinyl ester / carbon (EVC), and epoxy / vinyl ester / glass / carbon (EVGC-hybrid), all with help of a hand-layup technique. Furthermore, mechanical tests such as tensile, flexural, impact, and HDT (heat distortion temperature) were performed on all the variants as per the ASTM standards. Results shows that carbon fiber reinforcement with all IPN combinations has shown extraordinary performance (double fold) over the E-glass fiber reinforcement, whereas the hybrid (combination of E-glass/carbon) laminates have shown excellent characteristics over E-glass fiber reinforcement, irrespective of IPN matrix material. All the results were compared with each other and their corresponding variations were plotted as bar charts. ABSTRAK:  Objektif utama kajian ini adalah bagi membandingkan kekuatan fizikal rangkaian polimer saling menusuk (IPN) dengan pelbagai jenis gentian berbeza. Kajian ini mengguna pakai gentian kaca-E, karbon dan gabungan kaca-E dan gentian karbon (hibrid) sebagai penguat. Begitu juga, tiga kombinasi IPN dipilih sebagai bahan matrik, iaitu epoksi / poliuretan (EP), ester vinil / poliuretan (VP) dan epoksi / ester vinil (EV) sebagai campuran IPN. Bagi tujuan memahami secara mendalam ciri-ciri fizikal gabungan campuran dan gentian, sembilan varian (lamina) dihasilkan, malaui kombinasi seperti epoksi / poliuretan / kaca-E (EPG), epoksi / poliuretan / karbon (EPC), epoksi / ester vinil / kaca / karbon (EPGC-hibrid), ester vinil / poliuretan / kaca (VPG), ester vinil / poliuretan / karbon (VPC), ester vinil / poliuretan / kaca / karbon (VPGC), epoksi / ester vinil / kaca (EVG), epoksi / ester vinil / karbon (EVC), epoksi / ester vinil / kaca / karbon (EVGC-hibrid) dengan teknik susun atur lapisan menggunakan tangan. Selain itu, ujian mekanikal seperti tegangan, lenturan, hentaman dan HDT (suhu kelenturan panas) dilakukan pada semua varian mengikut piawaian ASTM. Dapatan kajian menunjukkan bahawa, penguat gentian karbon dengan semua kombinasi IPN telah menunjukkan prestasi luar biasa (dua kali ganda) daripada penguat gentian kaca-E, manakala lamina hibrid (campuran kaca-E / karbon) telah menunjukkan ciri-ciri sangat baik berbanding penguat gentian kaca-E tanpa mengira bahan matrik IPN. Semua hasil dapatan dibandingkan antara satu sama lain dan padanan variasi diplot sebagai carta bar.


Author(s):  
Xunpeng Zhao ◽  
Shuangshuang Sun ◽  
Yang Wang ◽  
Xiugang Wang

Abstract The material properties of composite materials are affected by changes in temperature and moisture. This study used the glass/carbon fiber reinforced plastic hybrid composite (G/CFRPHC) laminate as the research object. The stiffness and strength of the composite lamina were expressed as a function of hydrothermal parameters. Based on classical lamination theory(CLT) and macro-mechanical analysis, using MATLAB programming, the tensile strength of G/CFRPHC laminates under a hydrothermal environment was studied. In addition, the influence of temperature, ply thickness, ply stacking sequence, and ply angle on the tensile strength of G/CFRPHC laminates under a hydrothermal environment was discussed. The results show that the tensile strength of G/CFRPHC laminates decreases with the increase of temperature and laying angle in the temperature range of 20℃~110℃ in the hydrothermal environment (moisture absorption rate C1=0.5%). Furthermore, for the G/CFRPHC laminates with laying modes of (02G/90mC)S, (04G/90mC)S, (06G/90mC)S, as m increases, their tensile strength gradually decreases. The tensile strength of G/CFRPHC laminates with the same ply angle but different ply stacking sequence is also not the same.


2021 ◽  
Vol 2 (7) ◽  
pp. 1-2
Author(s):  
Solomon W Leung

Since the outbreak of COVID 19 in 2020, being able to detect diseases and chemicals with quick turn-around time becomes ever so needed and important. We have mounted seven different biocatalysts on a sensor platform to examine the performance of this electrochemical sensing system for the detection of different biomolecules/metabolites and environmental important molecules, with such we also compared how this sensing system fares with literature results of similar measurements. The sensor platform constitutes of a layer of bio composite mounted on different electrodes made out of Au, Ag, Pt, and glass carbon; the bio composite is fabricated with polymers and sol-gel Au nanoparticles with or without an extra layer of branching biomolecules. The targeting species for measurements include NH4+, NO3-, CN-, H2O2, and the biomolecules that post specific biomedical functions/identities. In this report, we provide a systematic update of analyses of this sensing system, including the unique identification potentials and sensitivities. This novel sensing system can be a valuable tool in biomedical diagnosis and environmental forensics; in particular the sensor platform used here, any biomedical diagnosis can be conducted with extremely high sensitivity as long as the biomolecules and their antigens are known.


2021 ◽  
pp. 2435-2445
Author(s):  
Filipe Ribeiro ◽  
José Sena-Cruz ◽  
Anastasios P. Vassilopoulos

Author(s):  
Saeed Reza Zahabi ◽  
Mohammad Sheikhzadeh ◽  
Saleh Akbarzadeh ◽  
Addie Bahi ◽  
Frank Ko

In the present work, a hierarchical braided polymer composite consists of Polytetrafluoroethylene (PTFE) fibers, reinforcement fibers, and epoxy resin was designed as a self-lubricant composite and bearing. Different reinforcements such as glass, carbon, and Kevlar fibers were employed to investigate the effect of reinforcement on the wear characteristics of composites. Besides, the influence of 2D/3D braid fabric was examined on the wear behavior of samples. Also, 90 and 120 N loads were applied to assess the load impact. Results illustrated that compared to glass and Kevlar, carbon could lead to a greater wear weight loss and friction coefficient. However, PTFE tribofilm was observed according to scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS) analysis. Moreover, with the increase of load, the wear stability of the composites faded significantly. Furthermore, the tribological features became inappropriate with the deployment of the 3D braid structure. Finally, the modeling of tribological parameters was carried out using response surface methodology-based D-optimal design. The adequacy of the models was checked by analysis of variance. Results implied that there is an excellent correlation between the model and the experiments.


2021 ◽  
Vol 5 (4) ◽  
pp. 78
Author(s):  
Beatrice Sabbatini ◽  
Alessandra Cambriani ◽  
Marco Cespi ◽  
Giovanni Filippo Palmieri ◽  
Diego Romano Perinelli ◽  
...  

Three-dimensional (3D) printing, or additive manufacturing, is a group of innovative technologies that are increasingly employed for the production of 3D objects in different fields, including pharmaceutics, engineering, agri-food and medicines. The most processed materials by 3D printing techniques (e.g., fused deposition modelling, FDM; selective laser sintering, SLS; stereolithography, SLA) are polymeric materials since they offer chemical resistance, are low cost and have easy processability. However, one main drawback of using these materials alone (e.g., polylactic acid, PLA) in the manufacturing process is related to the poor mechanical and tensile properties of the final product. To overcome these limitations, fillers can be added to the polymeric matrix during the manufacturing to act as reinforcing agents. These include inorganic or organic materials such as glass, carbon fibers, silicon, ceramic or metals. One emerging approach is the employment of natural polymers (polysaccharides and proteins) as reinforcing agents, which are extracted from plants or obtained from biomasses or agricultural/industrial wastes. The advantages of using these natural materials as fillers for 3D printing are related to their availability together with the possibility of producing printed specimens with a smaller environmental impact and higher biodegradability. Therefore, they represent a “green option” for 3D printing processing, and many studies have been published in the last year to evaluate their ability to improve the mechanical properties of 3D printed objects. The present review provides an overview of the recent literature regarding natural polymers as reinforcing agents for 3D printing.


Sign in / Sign up

Export Citation Format

Share Document