scholarly journals Investigating the Functions of Particles in Packed Aggregate Blend using a Discrete Element Method

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 556 ◽  
Author(s):  
Yinghao Miao ◽  
Weixiao Yu ◽  
Yue Hou ◽  
Liyan Guo ◽  
Linbing Wang

In asphalt mixture, aggregates account for up to 90% of the total volume and play an important role in the mechanical characteristics of asphalt mixture. The proportions of fine and coarse aggregates in gradation, as well as the function of aggregate particles, are important factors for the skeleton structure performance of asphalt mixtures. However, the existing asphalt mixture design methods are mostly based on empirical methods, where the non-uniformity and complexity of the composition of asphalt mixtures are not fully studied. In this study, the skeleton structure of aggregate mixture and function of aggregate are studied and analyzed using the Discrete Element Method (DEM). The Particle Flow 3D (PFC3D) DEM program is used to perform the numerical simulation. The average contact number and interaction forces by aggregate particles of different sizes are obtained and studied. The skeleton structure of aggregate mixture and function of aggregate particles are further analyzed from the meso-structural perspective.

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3700
Author(s):  
Changjiang Kou ◽  
Xiaohui Pan ◽  
Peng Xiao ◽  
Aihong Kang ◽  
Zhengguang Wu

This paper aims to clarify the shear deformation behavior of double-layer asphalt mixtures using the virtual uniaxial penetration test (UPT) with a discrete element method. For this purpose, asphalt mixtures with two different nominal maximum aggregate sizes were designed for the preparation of double-layer wheel tracking test specimens. Then, the cylindrical cores were prepared from the specimens and were cut for capturing the longitudinal profile images. These images were used to reconstruct a two-dimensional discrete element model (DEM) of the uniaxial penetration test specimen. The results indicate that the shear deformation behavior of the asphalt mixtures showed corresponding changes under the virtual loading. The tensile and compressive stress were distributed unevenly within the upper layer after the test, and both coarse aggregates and asphalt mortars bore a greater shear stress. Therefore, cracks were more likely to occur in the upper layer, leading to the failure of the specimens. This process enhanced the bonding between the asphalt mortars and the mineral aggregates. The aggregate particles in the upper layer moved more vertically, while those in the lower layer generally moved more laterally under the virtual loading. This behavior reveals the rutting mechanism of asphalt pavement.


Sign in / Sign up

Export Citation Format

Share Document