scholarly journals Modeling and Analysis of Single Point Incremental Forming Force with Static Pressure Support and Ultrasonic Vibration

Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1899
Author(s):  
Lang Bai ◽  
Yan Li ◽  
Mingshun Yang ◽  
Yunbo Lin ◽  
Qilong Yuan ◽  
...  

In order to solve the problem of low accuracy caused by instability and springback during the single point incremental forming (SPIF) process, static pressure support (SPS) and ultrasonic vibration (UV) are introduced into the technology for auxiliary forming. In order to qualitatively and quantitatively study the mechanism of static pressure support–ultrasonic vibration-single point incremental forming (SPS-UV-SPIF) force, a typical truncated cone is used as the research object. The working principle and motion rules of the technology are analyzed. The sheet micro-element of the sidewall area is taken as an analysis object. The spatial stress balance equation of the sheet is constructed. The various stresses are integrated and calculated. The forces in each area of the sheet are analyzed and modeled. Finally, an analytical model for SPS-UV-SPIF force is established. The influence law of the static pressure parameter and the vibration parameter on the forming force is obtained. The corresponding SPS system and UV system are designed. The Kistler forming force test system is built. The experimental results are consistent with the theoretical analysis results, which verifies the correctness of the analytical model.

2019 ◽  
Vol 14 (3) ◽  
Author(s):  
Vikas Sisodia ◽  
Shailendra Kumar

The present paper describes the experimental investigation on influence of process parameters on maximum forming force in Single Point Incremental Forming (SPIF) process using dummy sheet. Process parameters namely dummy sheet thickness, tool size, step size, wall angle and feed rate are selected. Taguchi L18 orthogonal array is used to design the experiments. From the analysis of variance (ANOVA) dummy sheet thickness, tool size, step size and wall angle are significant process parameters while feed rate is insignificant. It is found that as dummy sheet thickness, tool size, step size and wall angle increase magnitude of peak forming force increases while there is marginal decrease in forming force as feed rate increases. Predictive model is also developed for forming force. Validation tests are performed in order to check the accuracy of developed model. Optimum set of process parameters is also determined to minimize forming force. Experimental results are in good agreement with results predicted by the developed mathematical model.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Mingshun Yang ◽  
Lang Bai ◽  
Yan Li ◽  
Qilong Yuan

With increasing design complexities of thin-walled parts, the requirement of enhanced formability has impeded the development of the single point incremental forming (SPIF) process. In the present research, the ultrasonic vibration-assisted single point incremental forming (UV-SPIF) method was introduced to increase the formability of sheet metals. AL1060 aluminum alloy was adopted as the experimental material, and a truncated cone part was considered as the research object. The simulation model of UV-SPIF was established to analyze the distribution of plastic strains in the formed part. A forming angle was selected as the measuring index of formability of the aluminum sheet, and the influences of different vibration parameters on formability were evaluated. An experimental platform was devised to verify the accuracy of the obtained simulation results. It was found that ultrasonic vibration effectively improved the forming limit of the sheet. When the amplitude was 6 µm and the frequency was 25 kHz, the sheet yielded the best formability with the largest forming angle of 67 degrees.


2013 ◽  
Vol 63 ◽  
pp. 354-360 ◽  
Author(s):  
I. Bagudanch ◽  
G. Centeno ◽  
C. Vallellano ◽  
M.L. Garcia-Romeu

2011 ◽  
Vol 473 ◽  
pp. 833-840 ◽  
Author(s):  
Rogelio Pérez-Santiago ◽  
Isabel Bagudanch ◽  
Maria Luisa García-Romeu

Prediction of forming forces in Incremental Sheet Forming (ISF) is specially important in the case of using adapted machinery not designed for the process. Moreover, forming force is an important indicator that can be monitored on-line and utilized for real time process control. Besides experimentation, simulations based on the Finite Element Method (FEM) have been utilized as a reliable source of process force data. Nevertheless, the long solution times required to simulate ISF renders difficult its inclusion into a process optimization chain. In consequence, models that predict the forces required to manufacture simple parts have appeared. This work begins with a review of forming force models available for Single Point Incremental Forming (SPIF). Then, an equation recently proposed in the literature is compared with published experimental results of SPIF under different working conditions. The same data is employed to verify our own FEM simulations. Finally, the above-mentioned formula and FEM simulation were applied to predict the forming force of Variable Wall Angle (VWA) geometries where available force information is limited. Besides the applicability assessment of the equation, results will supplement a future experimental campaign focused in modeling geometries of intermediate complexity level by means of Computational Intelligence methods.


Sign in / Sign up

Export Citation Format

Share Document