scholarly journals A Hybrid Process Integrating Reverse Engineering, Pre-Repair Processing, Additive Manufacturing, and Material Testing for Component Remanufacturing

Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1961 ◽  
Author(s):  
Xinchang Zhang ◽  
Wenyuan Cui ◽  
Wei Li ◽  
Frank Liou

Metallic components can gain defects such as dents, cracks, wear, heat checks, deformation, etc., that need to be repaired before reinserting into service for extending the lifespan of these parts. In this study, a hybrid process was developed to integrate reverse engineering, pre-repair processing, additive manufacturing, and material testing for the purpose of part remanufacturing. Worn components with varied defects were scanned using a 3D scanner to recreate the three-dimensional models. Pre-repair processing methods which include pre-repair machining and heat-treatment were introduced. Strategies for pre-repair machining of defects including surface impact damage, surface superficial damage and cracking were presented. Pre-repair heat-treatment procedure for H13 tool steel which was widely used in die/mold application was introduced. Repair volume reconstruction methodology was developed to regain the missing geometry on worn parts. The repair volume provides a geometry that should be restored in the additive manufacturing process. A damaged component was repaired using the directed energy deposition process to rebuild the worn geometry. The repaired part was inspected in microstructure and mechanical aspects to evaluate the repair. The hybrid process solved key issues associated with repair, providing a solution for automated metallic component remanufacturing.

Author(s):  
Anne M. Brant ◽  
Murali M. Sundaram ◽  
Abishek B. Kamaraj

Localized electrodeposition (LED) was explored as an additive manufacturing technique with high control over process parameters and output geometry. The effect of variation of process parameters and changing boundary conditions during the deposition process on the output geometry was observed through simulation and experimentation. Trends were found between specific process parameters and output geometries in the simulations; trends varied between linear and nonlinear, and certain process parameters such as voltage and interelectrode gap were found to have a greater influence on the output than others. The simulations were able to predict the output width of deposition of experiments in an error of 8–30%. The information gained from this research allows for greater understanding of LED output, so that it can potentially be applied as an additive manufacturing technique of complex three-dimensional (3D) parts on the microscale.


2012 ◽  
Vol 479-481 ◽  
pp. 2226-2230
Author(s):  
Hai Lin Jiang

In order to carry out the error analyses of the aluminum alloy in reverse engineering, Mastercam was used to create three-dimensional (3D) parametric solid models and automatically generate NC program files. By using the generated NC program, a simulating is processed on a milling machine. The surface of the obtained product 1 was immediately scanned by a laser scanner. Using the obtained results from the laser scanner, the three-dimensional models were created in Geomagic Studio. Reanalysis of the three dimensional models, product 2 can be obtained. Finally, Error analysis was carried out by comparing the 3D scan data with the original design models. The current research demonstrates that error analysis by the present method is feasible. However, since aluminum was selected as the processing material, the scanned data is not satisfactory; contrast error is greater after reverse engineering.


2020 ◽  
Vol 976 ◽  
pp. 156-161
Author(s):  
Shu Guang Chen ◽  
Yi Du Zhang ◽  
Qiong Wu ◽  
Han Jun Gao

Given substrate parameters affect the heat transfer during additive manufacturing (AM) deposition process, the precision and residual stress of the component will also be affected. Such effect is an important aspect that should be considered but has not been reported. Thus, this paper presents a three-dimensional thermo-mechanical finite element model to study the effects of substrate parameters on the residual stress of Ti-6Al-4V walls during the AM process. The thermal and deflection histories and residual stress profile with different substrate parameters were investigated. Results show that the influence of the substrate height on the deflection, heat transfer and residual stress is most obvious, the length change has little influence on the deflection and stress distribution. The maximum deflection difference between the heights of 2.4 and 10.4 mm is 92.12%, the maximum deflection is reduced by 39.65% with the width increased from 15.4mm to 35.4mm. And the increased height is beneficial to the uniform of Z component residual stress but decrease uniformity of Y component residual stress.


2020 ◽  
Vol 177 ◽  
pp. 02003
Author(s):  
Elena Akulova ◽  
Aleksandr Alybaev ◽  
Daria Buzina

3D models of objects of urban development, created by the results of aerial photographic operations or laser scanning, have high metric accuracy, but require significant labor costs, both in terms of creation and visualization. To construct three-dimensional models that allow the user to perceive information in the usual spatial form, and satisfying the accuracy requirements for solving urban planning problems, it is proposed to automate the reverse engineering process based on the Metashape and ContextCapture software products.


Author(s):  
Oliver Avram ◽  
Chris Fellows ◽  
Marco Menerini ◽  
Anna Valente

AbstractNowadays, the role of hybridization within the wider manufacturing ecosystem gains significant momentum with multiple commercial solutions already available on the market. Despite the very promising benefits of combining and selectively exploiting the advantages of additive and subtractive technologies on the same machine, hybrid additive manufacturing is far from reaching its full potential. One of the central limitations of existing hybrid process chains is the lack of a harmonized, structured and automated workflows to support an adaptive manufacturing strategy. This work is motivated by the need to bridge this gap and to capture the logic behind an adaptive hybrid process chain with the aim to support the achievement of enhanced product quality and improved operational efficiency in hybrid additive manufacturing. The paper discusses the implementation of a hybrid CAx platform and the underlying methodology aiming at the dynamic reduction of variabilities associated with the laser metal deposition process. The hybrid workflow identifies the most adapted sequence and planning of additive and subtractive operations while considering part inspection as an in-envelope functionality to quantify the geometrical and dimensional part deviations and to trigger the regenerative mechanism. The methodology is demonstrated on a hybrid machine by deploying laser ablation for the in situ removal of build deviations and an adapted deposition operation as part of a regenerative strategy leading to higher part confidence.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2783
Author(s):  
Wanfei Ren ◽  
Jinkai Xu ◽  
Zhongxu Lian ◽  
Peng Yu ◽  
Huadong Yu

In this work, the localized electrochemical micro additive manufacturing technology based on the FluidFM (fluidic force microscope) has been introduced to fabricate micro three-dimensional overhang metal structures at sub-micron resolution. It breaks through the localized deposition previously achieved by micro-anode precision movement, and the micro-injection of the electrolyte is achieved in a stable electric field distribution. The structure of electrochemical facilities has been designed and optimized. More importantly, the local electrochemical deposition process has been analyzed with positive source diffusion, and the mathematical modeling has been revealed in the particle conversion process. A mathematical model is proposed for the species flux under the action of pulsed pressure in an innovatively localized liquid feeding process. Besides, the linear structure, bulk structure, complex structure, and large-area structure of the additive manufacturing are analyzed separately. The experimental diameter of the deposited cylinder structure is linearly fitted. The aspect ratio of the structure is greater than 20, the surface roughness value is between 0.1–0.2 μm at the surface of bulk structures, and the abilities are verified for deposition of overhang, hollow complex structures. Moreover, this work verifies the feasibility of 3D overhang array submicron structure additive manufacturing, with the application of pulsed pressure. Furthermore, this technology opens new avenues for the direct fabrication of nano circuit interconnection, tiny sensors, and micro antennas.


1975 ◽  
Vol 39 (8) ◽  
pp. 544-546
Author(s):  
HL Wakkerman ◽  
GS The ◽  
AJ Spanauf

2009 ◽  
Vol 37 (2) ◽  
pp. 62-102 ◽  
Author(s):  
C. Lecomte ◽  
W. R. Graham ◽  
D. J. O’Boy

Abstract An integrated model is under development which will be able to predict the interior noise due to the vibrations of a rolling tire structurally transmitted to the hub of a vehicle. Here, the tire belt model used as part of this prediction method is first briefly presented and discussed, and it is then compared to other models available in the literature. This component will be linked to the tread blocks through normal and tangential forces and to the sidewalls through impedance boundary conditions. The tire belt is modeled as an orthotropic cylindrical ring of negligible thickness with rotational effects, internal pressure, and prestresses included. The associated equations of motion are derived by a variational approach and are investigated for both unforced and forced motions. The model supports extensional and bending waves, which are believed to be the important features to correctly predict the hub forces in the midfrequency (50–500 Hz) range of interest. The predicted waves and forced responses of a benchmark structure are compared to the predictions of several alternative analytical models: two three dimensional models that can support multiple isotropic layers, one of these models include curvature and the other one is flat; a one-dimensional beam model which does not consider axial variations; and several shell models. Finally, the effects of internal pressure, prestress, curvature, and tire rotation on free waves are discussed.


2020 ◽  
Vol 17 (4) ◽  
pp. 342-351
Author(s):  
Sergio A. Durán-Pérez ◽  
José G. Rendón-Maldonado ◽  
Lucio de Jesús Hernandez-Diaz ◽  
Annete I. Apodaca-Medina ◽  
Maribel Jiménez-Edeza ◽  
...  

Background: The protozoan Giardia duodenalis, which causes giardiasis, is an intestinal parasite that commonly affects humans, mainly pre-school children. Although there are asymptomatic cases, the main clinical features are chronic and acute diarrhea, nausea, abdominal pain, and malabsorption syndrome. Little is currently known about the virulence of the parasite, but some cases of chronic gastrointestinal alterations post-infection have been reported even when the infection was asymptomatic, suggesting that the cathepsin L proteases of the parasite may be involved in the damage at the level of the gastrointestinal mucosa. Objective: The aim of this study was the in silico identification and characterization of extracellular cathepsin L proteases in the proteome of G. duodenalis. Methods: The NP_001903 sequence of cathepsin L protease from Homo sapienswas searched against the Giardia duodenalisproteome. The subcellular localization of Giardia duodenaliscathepsin L proteases was performed in the DeepLoc-1.0 server. The construction of a phylogenetic tree of the extracellular proteins was carried out using the Molecular Evolutionary Genetics Analysis software (MEGA X). The Robetta server was used for the construction of the three-dimensional models. The search for possible inhibitors of the extracellular cathepsin L proteases of Giardia duodenaliswas performed by entering the three-dimensional structures in the FINDSITEcomb drug discovery tool. Results: Based on the amino acid sequence of cathepsin L from Homo sapiens, 8 protein sequences were identified that have in their modular structure the Pept_C1A domain characteristic of cathepsins and two of these proteins (XP_001704423 and XP_001704424) are located extracellularly. Threedimensional models were designed for both extracellular proteins and several inhibitory ligands with a score greater than 0.9 were identified. In vitrostudies are required to corroborate if these two extracellular proteins play a role in the virulence of Giardia duodenalisand to discover ligands that may be useful as therapeutic targets that interfere in the mechanism of pathogenesis generated by the parasite. Conclusion: In silicoanalysis identified two proteins in the Giardia duodenalisprotein repertoire whose characteristics allowed them to be classified as cathepsin L proteases, which may be secreted into the extracellular medium to act as virulence factors. Three-dimensional models of both proteins allowed the identification of inhibitory ligands with a high score. The results suggest that administration of those compounds might be used to block the endopeptidase activity of the extracellular cathepsin L proteases, interfering with the mechanisms of pathogenesis of the protozoan parasite Giardia duodenalis.


Sign in / Sign up

Export Citation Format

Share Document