scholarly journals Mechanical Identification of Materials and Structures with Optical Methods and Metaheuristic Optimization

Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2133
Author(s):  
Elisa Ficarella ◽  
Luciano Lamberti ◽  
Sadik Ozgur Degertekin

This study presents a hybrid framework for mechanical identification of materials and structures. The inverse problem is solved by combining experimental measurements performed by optical methods and non-linear optimization using metaheuristic algorithms. In particular, we develop three advanced formulations of Simulated Annealing (SA), Harmony Search (HS) and Big Bang-Big Crunch (BBBC) including enhanced approximate line search and computationally cheap gradient evaluation strategies. The rationale behind the new algorithms—denoted as Hybrid Fast Simulated Annealing (HFSA), Hybrid Fast Harmony Search (HFHS) and Hybrid Fast Big Bang-Big Crunch (HFBBBC)—is to generate high quality trial designs lying on a properly selected set of descent directions. Besides hybridizing SA/HS/BBBC metaheuristic search engines with gradient information and approximate line search, HS and BBBC are also hybridized with an enhanced 1-D probabilistic search derived from SA. The results obtained in three inverse problems regarding composite and transversely isotropic hyperelastic materials/structures with up to 17 unknown properties clearly demonstrate the validity of the proposed approach, which allows to significantly reduce the number of structural analyses with respect to previous SA/HS/BBBC formulations and improves robustness of metaheuristic search engines.

2013 ◽  
Vol 46 (3) ◽  
pp. 779-787 ◽  
Author(s):  
Angela Altomare ◽  
Nicola Corriero ◽  
Corrado Cuocci ◽  
Anna Moliterni ◽  
Rosanna Rizzi

The big bang–big crunch method is a global optimization approach developed upon the analogy of one of the cosmological theories of the evolution of the universe. It has been suitably combined with a simulated annealing algorithm and used for solving crystal structure from powder diffraction data in direct space. When compared with the traditional simulated annealing method, it provides a significant advance: good solutions are attained in a shorter time. The new method has been implemented in theEXPOpackage. Its successful application is demonstrated with examples of already known structures.


2020 ◽  
Vol 15 ◽  

Load frequency control (LFC) for multi-area restructured power system using discrete controlscheme has been suggested in this paper. The proposed LFC scheme utilizes synchronously measured dataof frequency and tie-line power to calculate area control error (ACE). A discrete non-integer proportionalintegral derivative controller (D-FOPID) has been used to derive frequency error to zero. Two-area thermaland four-area hydro thermal deregulated power system has been used to investigate various LFC issues. Theoptimal factors of D-FOPID have been obtained using big bang big crunch (BBBC) algorithm. The systemresults under MATLAB/Simulink validate that D-FOPID effectively work under different types of contractscenarios. D-FOPID performance has also been compared to discrete proportional integral derivativecontroller (D-PID). Further the compliance with control standards of North American electric reliabilitycouncil (NERC) has also been ensured for both the controller.


Author(s):  
Saman Babaie-Kafaki ◽  
Saeed Rezaee

Hybridizing the trust region, line search and simulated annealing methods, we develop a heuristic algorithm for solving unconstrained optimization problems. We make some numerical experiments on a set of CUTEr test problems to investigate efficiency of the suggested algorithm. The results show that the algorithm is practically promising.


Sign in / Sign up

Export Citation Format

Share Document