scholarly journals Numerical Simulation on In-plane Deformation Characteristics of Lightweight Aluminum Honeycomb under Direct and Indirect Explosion

Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2222 ◽  
Author(s):  
Xiangcheng Li ◽  
Yuliang Lin ◽  
Fangyun Lu

Lightweight aluminum honeycomb is a buffering and energy-absorbed structure against dynamic impact and explosion. Direct and indirect explosions with different equivalent explosive masses are applied to investigate the in-plane deformation characteristics and energy-absorbing distribution of aluminum honeycombs. Two finite element models of honeycombs, i.e., rigid plate-honeycomb-rigid plate (RP-H-RP) and honeycomb-rigid plate (H-RP) are created. The models indicate that there are three deformation modes in the X1 direction for the RP-H-RP, which are the overall response mode at low equivalent explosive masses, transitional response mode at medium equivalent explosive masses, and local response mode at large equivalent explosive masses, respectively. Meanwhile, the honeycombs exhibit two deformation modes in the X2 direction, i.e., the expansion mode at low equivalent explosive masses and local inner concave mode at large equivalent explosive masses, respectively. Interestingly, a counter-intuitive phenomenon is observed on the loaded boundary of the H-RP. Besides, the energy distribution and buffering capacity of different parts on the honeycomb models are discussed. In a unit cell, most of the energy is absorbed by the edges with an edge thickness of 0.04 mm while little energy is absorbed by the other bilateral edges. For the buffering capacity, the honeycomb in the X1 direction behaves better than that in the X2 direction.

2020 ◽  
pp. 78-82
Author(s):  
A.Р. Evdokimov ◽  
A.N. Gromyiko ◽  
A.A. Mironov

Analytical models of static and dynamic impact elastoplastic deformation of tubular energy-absorbing elements constituting a tubular plastic shock absorber are proposed. The developed models can be used for the calculation and design of these shock absorbers. Keywords static and dynamic elastoplastic deformation, mathematical modeling, tubular energy-absorbing element, tubular plastic shock absorber, impact loading. [email protected]


2017 ◽  
Vol 176 ◽  
pp. 630-639 ◽  
Author(s):  
A. Al Antali ◽  
R. Umer ◽  
J. Zhou ◽  
W.J. Cantwell

1994 ◽  
Author(s):  
David F. Sounik ◽  
Dennis W. McCullough ◽  
John L. Clemons ◽  
John L. Liddle

2019 ◽  
Vol 19 ◽  
pp. 74-83 ◽  
Author(s):  
Buddhima Indraratna ◽  
Cholachat Rujikiatkamjorn ◽  
Miriam Tawk ◽  
Ana Heitor

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Xingwang Sheng ◽  
Weiqi Zheng ◽  
Jianxian Wu ◽  
Handong Zhang

The complex local deformation modes of the cable-stayed bridge influence the deformation characteristics of the unballasted tracks laid on it. In this work, a large-scale segment model of a cable-stayed bridge was fabricated, and the maximum upward bending deformation mode of the cable-stayed bridge was realized by multipoint loading on the segment model to study the deformation behaviors of the unballasted tracks. Experimental results indicated that the nonlinear behaviors of the rubber isolation layers are apparent with the loading increased, and the interlayer behaviors of the unballasted track can be improved by the rubber isolation layer. Besides, the relative tensile deformations at interlayers of the unballasted track are inevitable. It is noted that no void and silt form at interlayers of the unballasted tracks with rubber isolation layers due to the precompressions of the rubber material. However, it is entirely possible to produce some diseases such as voids and silts at interlayers of the unballasted track with the geotextile isolation layers paved on the cable-stayed bridge. Furthermore, it is feasible to use the elastic isolation layer to improve the interlayer deformation characteristics because a particular elastic buffer is provided at interlayers of the unballasted track.


Sign in / Sign up

Export Citation Format

Share Document