scholarly journals Correlations of Equilibrium Properties and Electronic Structure of Pure Metals

Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2932
Author(s):  
Jianhong Dai ◽  
Dongye He ◽  
Yan Song

First principles calculations were carried out to study the equilibrium properties of metals, including the electrons at bonding critical point; ebcp; cohesive energy; Ecoh; bulk modulus; B; and, atomic volume; V. 44 pure metals, including the s valence (alkali), p valence (groups III to V), and d valence (transition) metals were selected. In the present work, the electronic structure parameter ebcp has been considered to be a bridge connecting with the equilibrium properties of metals, and relationships between ebcp and equilibrium properties (V; Ecoh; and B) are established. It is easy to estimate the equilibrium properties (Ecoh; V, and B) of pure metals through proposed formulas. The relationships that were derived in the present work might provide a method to study the intrinsic mechanisms of the equilibrium properties of alloys and to develop new alloys.

2000 ◽  
Vol 646 ◽  
Author(s):  
R. de Coss ◽  
A. Aguayo ◽  
G. Murrieta

ABSTRACTFirst-principles total-energy electronic structure calculations based on the full-potential linearized augmented plane wave (LAPW) method have been used to study the electronic and elastic properties of MoV, MoNb, and MoTa with the B2 (CsCl) estructure. From the calculated values for the bulk modulus we have determined the melting temperature using an empirical correlation. The chemical bond and the electronic structure around the Fermi level are analyzed. In particular, we found that MoTa which have the experimental determined highest melting point of the studied materials, present the largest bulk modulus and the highest degree of covalence bonding of these intermetallic compounds.


2009 ◽  
Vol 23 (10) ◽  
pp. 1281-1290 ◽  
Author(s):  
YONGCHENG LIANG ◽  
ANHU LI ◽  
JIANZHI ZHAO ◽  
WENQING ZHANG

First-principles calculations on the incompressibility, elasticity and hardness of the Os , OsB 2, Re , and ReB 2 materials have systematically been performed by the plane-wave basis pseudopotential method. Transition metals Os and Re , which have high bulk modulus but low hardness, can be converted into hard materials by combining them with small B atoms. Moreover, electronic and structural mechanisms of ReB 2 and OsB 2 are analyzed in detail and compared. It is shown that incorporating small B atoms into heavy transition metals should be a valid pathway to obtain new superhard materials.


2014 ◽  
Vol 852 ◽  
pp. 198-202
Author(s):  
Shuo Huang ◽  
Chuan Hui Zhang ◽  
Rui Zi Li ◽  
Jing Sun ◽  
Jiang Shen

The structural and elastic properties of B2 ScAl doped with Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag and Cd elements are studied by using first-principles calculations. The calculated elastic coefficients of pure ScAl are consistent with other theoretical results. The results of elastic constants indicate that all the ScAl-based alloys discussed are mechanically stable. The bulk modulusB, shear modulusG, Youngs modulusY, Pugh ratioB/Gand Cauchy pressure (C12-C44) are investigated. It is found that the addition of Ru that prefers Al site in ScAl can increase the stiffness of ScAl and improve its ductility.


2014 ◽  
Vol 52 (12) ◽  
pp. 1025-1029
Author(s):  
Min-Wook Oh ◽  
Tae-Gu Kang ◽  
Byungki Ryu ◽  
Ji Eun Lee ◽  
Sung-Jae Joo ◽  
...  

2019 ◽  
Vol 7 (9) ◽  
pp. 4971-4976 ◽  
Author(s):  
Tongtong Wang ◽  
Xiaosong Guo ◽  
Jingyan Zhang ◽  
Wen Xiao ◽  
Pinxian Xi ◽  
...  

We give a systematic study of the HER catalytic activity of transition metal doped NiS2 by first principles calculations and experiments.


2020 ◽  
Vol 77 (7) ◽  
pp. 587-591
Author(s):  
Rundong Liang ◽  
Xiuwen Zhao ◽  
Guichao Hu ◽  
Weiwei Yue ◽  
Xiaobo Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document