scholarly journals Low Dimensional Carbon-Based Catalysts for Efficient Photocatalytic and Photo/Electrochemical Water Splitting Reactions

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 114 ◽  
Author(s):  
Yoongu Lim ◽  
Dong-Kyu Lee ◽  
Seong Min Kim ◽  
Woosung Park ◽  
Sung Yong Cho ◽  
...  

A universal increase in energy consumption and the dependency on fossil fuels have resulted in increasing severity of global warming, thus necessitating the search of new and environment-friendly energy sources. Hydrogen is as one of the energy sources that can resolve the abovementioned problems. Water splitting promotes ecofriendly hydrogen production without the formation of any greenhouse gas. The most common process for hydrogen production is electrolysis, wherein water molecules are separated into hydrogen and oxygen through electrochemical reactions. Solar-energy-induced chemical reactions, including photocatalysis and photoelectrochemistry, have gained considerable attention because of the simplicity of their procedures and use of solar radiation as the energy source. To improve performance of water splitting reactions, the use of catalysts has been widely investigated. For example, the novel-metal catalysts possessing extremely high catalytic properties for various reactions have been considered. However, due to the rarity and high costs of the novel-metal materials, the catalysts were considered unsuitable for universal use. Although other transition-metal-based materials have also been investigated, carbon-based materials, which are obtained from one of the most common elements on Earth, have potential as low-cost, nontoxic, high-performance catalysts for both photo and electrochemical reactions. Because abundancy, simplicity of synthesis routes, and excellent performance are the important factors for catalysts, easy optimization and many variations are possible in carbon-materials, making them more attractive. In particular, low-dimensional carbon materials, such as graphene and graphitic carbon nitride, exhibit excellent performance because of their unique electrical, mechanical, and catalytic properties. In this mini-review, we will discuss the performance of low-dimensional carbon-based materials for water splitting reactions.

2020 ◽  
Vol 1 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Roberto Fiorenza ◽  
Marcello Condorelli ◽  
Luisa D’Urso ◽  
Giuseppe Compagnini ◽  
Marianna Bellardita ◽  
...  

Objective: The necessity to have green and sustainable industrial processes has promoted new technologies for air and water purification together with the research of new energy sources. In this contest, the TiO2-based photocatalysis can be considered a promising route for both environmental applications aIn this work, we have investigated the photocatalytic performance of TiO2-CoOx composites on both photooxidation and photoreduction reactions. Specifically, we have compared the performance of the composites in the thermo-catalytic, photo-catalytic and photothermal-catalytic oxidation of ethanol chosen as model volatile organic compound (VOC) and in the photocatalytic hydrogen production by simulated solar light from aqueous solution of ethanol.nd hydrogen production through water splitting. Background: The necessity to have green and sustainable industrial processes has promoted new technologies for air and water purification together with the research of new energy sources. In this contest, the TiO2-based photocatalysis can be considered a promising route for both environmental applications and hydrogen production through water splitting. Methods: The samples were prepared with a simple impregnation method, and were characterized by Scanning Electron (SEM) and Transmission Electron (TEM) microscopies, X-ray powder diffraction (XRD), N2 adsorption-desorption measurements, Temperature Programmed Reduction in hydrogen (H2- TPR) and X-ray Photoelectron (XPS), Raman, UV-Vis Diffuse Reflectance (UV-Vis DRS) and Photoluminescence (PL) spectroscopies. The catalytic and photocatalytic activity were carried out on pyrex reactors irradiated with a solar lamp and analyzing the reactions products through gas chromatography. Results: The presence and the amount of cobalt oxide were found crucial in determining the performance of the TiO2-based composites for both the catalytic and photocatalytic processes. In particular, the addition of 1 weight percent of CoOx led to the best performance in the photocatalytic processes, whereas a higher amount was beneficial in the thermo-catalytic tests. The multi-catalytic approach based on the synergistic effect of photocatalysis and thermocatalysis in the presence of the TiO2-1%CoOx sample allowed the temperature necessary to obtain 50% ethanol conversion and 50% yield in CO2 to be reduced by 40°C and 50°C, respectively. The same sample was also the best catalyst for photocatalytic solar H2 production. Conclusion: The presence of small amounts of cobalt oxide leads to an efficient composite with TiO2 facilitating the space charge separation and increasing the lifetime of the generated photoholes and electrons. The wide versatility of TiO2-CoOx catalysts both for photooxidation and photoreduction reactions motivates to further exploit the use of these systems in real solar-driven photocatalysis.


2020 ◽  
Vol 4 (2) ◽  
pp. 582-588 ◽  
Author(s):  
Yu-Yang Sun ◽  
Mei-Yan Jiang ◽  
Lian-Kui Wu ◽  
Guang-Ya Hou ◽  
Yi-Ping Tang ◽  
...  

Developing a bifunctional electrocatalyst with a facile method, low cost, excellent performance and good stability for overall water splitting is essential for the wide application of hydrogen production.


2019 ◽  
Vol 7 (23) ◽  
pp. 7104-7113 ◽  
Author(s):  
Fafei Hu ◽  
Luqi Tao ◽  
Huaiyu Ye ◽  
Xiandong Li ◽  
Xianping Chen

Hydrogen production by water splitting using a particular photocatalyst has received extensive attention as a substitute for clean energy sources.


2021 ◽  
Author(s):  
Yaoxia Yang ◽  
Xuqin An ◽  
Mi Kang ◽  
Fengyao Guo ◽  
Lan Zhang ◽  
...  

The construction of excellent performance electrocatalysts for hydrogen evolution reaction (HER) with low-cost and economical strategy was still struggling with an enormous challenge in electrochemical water splitting. In this paper,...


2017 ◽  
Vol 5 (32) ◽  
pp. 16748-16756 ◽  
Author(s):  
Mengmeng Shao ◽  
Yangfan Shao ◽  
Jianwei Chai ◽  
Yuanju Qu ◽  
Mingyang Yang ◽  
...  

The novel photocatalyst Ti2C/g-C3N4 exhibits substantially enhanced water splitting activities due to its improved light absorbance, efficient separation of photoinduced carriers and large surface area.


2020 ◽  
Vol 16 ◽  
Author(s):  
Yuxue Wei ◽  
Honglin Qin ◽  
Jinxin Deng ◽  
Xiaomeng Cheng ◽  
Mengdie Cai ◽  
...  

Introduction: Solar-driven photocatalytic hydrogen production from water splitting is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. In this review, recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. In particular, the factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Background: Photocatalytic hydrogen evolution from water splitting using photocatalyst semiconductors is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. Methods: This review summarizes the recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation. Results: Recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. The factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Conclusion: The state-of-the-art CdS for producing hydrogen from photocatalytic water splitting under visible light is discussed. The future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are also described.


Nanoscale ◽  
2021 ◽  
Author(s):  
Dongxue Yao ◽  
Lingling Gu ◽  
Bin Zuo ◽  
Shuo Weng ◽  
Shengwei Deng ◽  
...  

The technology of electrolyzing water to prepare high-purity hydrogen is an important field in today's energy development. However, how to prepare efficient, stable, and inexpensive hydrogen production technology from electrolyzed...


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shan Wang ◽  
Aolin Lu ◽  
Chuan-Jian Zhong

AbstractAs a promising substitute for fossil fuels, hydrogen has emerged as a clean and renewable energy. A key challenge is the efficient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efficient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active, stable, and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use, which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity, stability, and efficiency. This will be followed by outlining current knowledge on the two half-cell reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be discussed. New strategies and insights in exploring the synergistic structure, morphology, composition, and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally, future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efficient production of hydrogen from water splitting electrolysis will also be outlined.


Sign in / Sign up

Export Citation Format

Share Document