scholarly journals Facile Tailoring of Contact Layer Characteristics of the Triboelectric Nanogenerator Based on Portable Imprinting Device

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 872 ◽  
Author(s):  
Sumin Cho ◽  
Sunmin Jang ◽  
Moonwoo La ◽  
Yeongcheol Yun ◽  
Taekyung Yu ◽  
...  

Renewable energy harvesting technologies have been actively studied in recent years for replacing rapidly depleting energies, such as coal and oil energy. Among these technologies, the triboelectric nanogenerator (TENG), which is operated by contact-electrification, is attracting close attention due to its high accessibility, light weight, high shape adaptability, and broad applications. The characteristics of the contact layer, where contact electrification phenomenon occurs, should be tailored to enhance the electrical output performance of TENG. In this study, a portable imprinting device is developed to fabricate TENG in one step by easily tailoring the characteristics of the polydimethylsiloxane (PDMS) contact layer, such as thickness and morphology of the surface structure. These characteristics are critical to determine the electrical output performance. All parts of the proposed device are 3D printed with high-strength polylactic acid. Thus, it has lightweight and easy customizable characteristics, which make the designed system portable. Furthermore, the finger tapping-driven TENG of tailored PDMS contact layer with microstructures is fabricated and easily generates 350 V of output voltage and 30 μA of output current with a simple finger tapping motion-related biomechanical energy.

Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 551 ◽  
Author(s):  
Moonwoo La ◽  
Jun Choi ◽  
Jeong-Young Choi ◽  
Taek Hwang ◽  
Jeongjin Kang ◽  
...  

Triboelectric nanogenerators (TENG), which utilize contact electrification of two different material surfaces accompanied by electrical induction has been proposed and is considered as a promising energy harvester. Researchers have attempted to form desired structures on TENG surfaces and successfully demonstrated the advantageous effect of surface topography on its electrical output performance. In this study, we first propose the structured Al (SA)-assisted TENG (SA-TENG), where one of the contact layers of the TENG is composed of a structured metal surface formed by a metal-to-metal (M2M) imprinting process. The fabricated SA-TENG generates more than 200 V of open-circuit voltage and 60 µA of short-circuit current through a simple finger tapping motion. Given that the utilization of the M2M imprinting process allows for the rapid, versatile and easily accessible structuring of various metal surfaces, which can be directly used as a contact layer of the TENG to substantially enhance its electrical output performance, the present study may considerably broaden the applicability of the TENG in terms of its fabrication standpoint.


Nano Energy ◽  
2020 ◽  
Vol 70 ◽  
pp. 104541 ◽  
Author(s):  
Sunmin Jang ◽  
Moonwoo La ◽  
Sumin Cho ◽  
Yeongcheol Yun ◽  
Jun Hyuk Choi ◽  
...  

2020 ◽  
Vol 22 (5) ◽  
pp. 1901560
Author(s):  
Rui Guo ◽  
Hulin Zhang ◽  
Zhen Pei ◽  
Song Yang ◽  
Chao Ge ◽  
...  

2021 ◽  
Vol 13 (5) ◽  
pp. 6331-6338
Author(s):  
Dong Guan ◽  
Guoqiang Xu ◽  
Xin Xia ◽  
Jiaqi Wang ◽  
Yunlong Zi

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1111
Author(s):  
Changmei Lin ◽  
Duo Chen ◽  
Zifeng Hua ◽  
Jun Wang ◽  
Shilin Cao ◽  
...  

Cellulose paper has been functionalized by nanoparticles such as Ag nanoparticles, TiO2, and BaTiO3 for versatile applications including supercapacitor, sensors, photoactivity, and packaging. Herein, zinc oxide (ZnO) nanosheet-modified paper (ZnO@paper) with excellent antibacterial properties was fabricated via a mild ZnCl2-urea eutectic solvent. In this proposed method, cellulose fibers as the raw material for ZnO@paper were treated by an aqueous solvent of ZnCl2-urea; the crystalline region was destroyed and [ZnCl]+-based cations were adsorbed on the surface of cellulose fibers, facilitating more ZnO growth on ZnO@paper. A flexible paper-based triboelectric nanogenerator (P-TENG) was made of ZnO@paper paired with a PTFE film. The P-TENG presents high triboelectric output performance and antibacterial activity. For instance, the output voltage and current of the P-TENG were 77 V and 0.17 μA, respectively. ZnO@paper showed excellent antibacterial activity against E. coli and S. aureus, suggesting that a P-TENG can restrain and kill the bacteria during the working process. The results also indicated that ZnO could improve the surface roughness of cellulose paper, enhancing the output performance of a flexible P-TENG. In addition, the potential application of a P-TENG-based pressure sensor for determining human motion information was also reported. This study not only produced a high-performance P-TENG for fabricating green and sustainable electronics, but also provides an effective and novel method for ZnO@paper preparation.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 218
Author(s):  
Taili Du ◽  
Xusheng Zuo ◽  
Fangyang Dong ◽  
Shunqi Li ◽  
Anaeli Elibariki Mtui ◽  
...  

With the development of intelligent ship, types of advanced sensors are in great demand for monitoring the work conditions of ship machinery. In the present work, a self-powered and highly accurate vibration sensor based on bouncing-ball triboelectric nanogenerator (BB-TENG) is proposed and investigated. The BB-TENG sensor consists of two copper electrode layers and one 3D-printed frame filled with polytetrafluoroethylene (PTFE) balls. When the sensor is installed on a vibration exciter, the PTFE balls will continuously bounce between the two electrodes, generating a periodically fluctuating electrical signals whose frequency can be easily measured through fast Fourier transform. Experiments have demonstrated that the BB-TENG sensor has a high signal-to-noise ratio of 34.5 dB with mean error less than 0.05% at the vibration frequency of 10 Hz to 50 Hz which covers the most vibration range of the machinery on ship. In addition, the BB-TENG can power 30 LEDs and a temperature sensor by converting vibration energy into electricity. Therefore, the BB-TENG sensor can be utilized as a self-powered and highly accurate vibration sensor for condition monitoring of intelligent ship machinery.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 158
Author(s):  
Peng Huang ◽  
Dan-Liang Wen ◽  
Yu Qiu ◽  
Ming-Hong Yang ◽  
Cheng Tu ◽  
...  

In recent years, wearable electronic devices have made considerable progress thanks to the rapid development of the Internet of Things. However, even though some of them have preliminarily achieved miniaturization and wearability, the drawbacks of frequent charging and physical rigidity of conventional lithium batteries, which are currently the most commonly used power source of wearable electronic devices, have become technical bottlenecks that need to be broken through urgently. In order to address the above challenges, the technology based on triboelectric effect, i.e., triboelectric nanogenerator (TENG), is proposed to harvest energy from ambient environment and considered as one of the most promising methods to integrate with functional electronic devices to form wearable self-powered microsystems. Benefited from excellent flexibility, high output performance, no materials limitation, and a quantitative relationship between environmental stimulation inputs and corresponding electrical outputs, TENGs present great advantages in wearable energy harvesting, active sensing, and driving actuators. Furthermore, combined with the superiorities of TENGs and fabrics, textile-based TENGs (T-TENGs) possess remarkable breathability and better non-planar surface adaptability, which are more conducive to the integrated wearable electronic devices and attract considerable attention. Herein, for the purpose of advancing the development of wearable electronic devices, this article reviews the recent development in materials for the construction of T-TENGs and methods for the enhancement of electrical output performance. More importantly, this article mainly focuses on the recent representative work, in which T-TENGs-based active sensors, T-TENGs-based self-driven actuators, and T-TENGs-based self-powered microsystems are studied. In addition, this paper summarizes the critical challenges and future opportunities of T-TENG-based wearable integrated microsystems.


Sign in / Sign up

Export Citation Format

Share Document