scholarly journals Free Vibration Analysis of Curved Laminated Composite Beams with Different Shapes, Lamination Schemes, and Boundary Conditions

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 1010 ◽  
Author(s):  
Bin Qin ◽  
Xing Zhao ◽  
Huifang Liu ◽  
Yongge Yu ◽  
Qingshan Wang

A general formulation is considered for the free vibration of curved laminated composite beams (CLCBs) with alterable curvatures and diverse boundary restraints. In accordance with higher-order shear deformation theory (HSDT), an improved variational approach is introduced for the numerical modeling. Besides, the multi-segment partitioning strategy is exploited for the derivation of motion equations, where the CLCBs are separated into several segments. Penalty parameters are considered to handle the arbitrary boundary conditions. The admissible functions of each separated beam segment are expanded in terms of Jacobi polynomials. The solutions are achieved through the variational approach. The proposed methodology can deal with arbitrary boundary restraints in a unified way by conveniently changing correlated parameters without interfering with the solution procedure.

Author(s):  
Vijay Kumar Badagi ◽  
Rajamohan Ganesan

In this study, Symmetric cross-ply linear width tapered laminated composite beam is considered. Due to the variety of width tapered composite beams and the complexity of the analysis, no closed-form analytical solution is available at present regarding free vibration response. Therefore in the present work, the Ritz method is used for the free vibration analysis with considering uni-axial compressive and tensile force. The elastic stiffness of the width tapered composite beam is analyzed compared to uniform laminated composite beam. Free vibration which is significant to investigate the dynamic characteristics of the structure using Ritz method with and without effect of axial tensile and compressive force is analyzed. The analysis is based on 1D laminated beam theory. The governing equations are obtained by means of Hamilton’s principle. Tsai-Wu failure analysis is considered to find the tensile and compressive failure force for each ply in the laminate. Buckling analysis is conducted to find the critical buckling force for the laminated composite beam-column subjected to different sets of boundary conditions. Simply supported, Clamped-free, Clamped-Clamped edge boundary conditions are considered. A detailed parametric study is conducted on tapered composite beams made of NCT/301 graphite-epoxy to investigate the effects of the ratio of the width of the thick section to thin section, boundary conditions, effects of axial and compressive force on natural frequency and buckling analysis.


2008 ◽  
Vol 28 (7) ◽  
pp. 881-892 ◽  
Author(s):  
Gökmen Atlihan ◽  
Hasan Çallioğlu ◽  
E. Şahin Conkur ◽  
Muzaffer Topcu ◽  
Uğur Yücel

2011 ◽  
Vol 482 ◽  
pp. 1-9
Author(s):  
A. Mahi ◽  
E.A. Adda-Bedia ◽  
A. Benkhedda

The purpose of this paper is to present exact solutions for the free vibration of symmetrically laminated composite beams. The present analysis includes the first shear deformation theory and the rotary inertia. The analytical solutions take into account the thermal effect on the free vibration characteristics of the composite beams. In particular, the aim of this work is to derive the exact closed-form characteristic equations for common boundary conditions. The different parameters that could affect the natural frequencies are included as factors (aspect ratio, thermal load-to-shear coefficient, ply orientation) to better perform dynamic analysis to have a good understanding of dynamic behavior of composite beams. In order to derive the governing set of equations of motion, the Hamilton’s principle is used. The system of ordinary differential equations of the laminated beams is then solved and the natural frequencies’ equations are obtained analytically for different boundary conditions. Numerical results are presented to show the influence of temperature rise, aspect ratio, boundary conditions and ply orientation on the natural frequencies of composite beams.


Sign in / Sign up

Export Citation Format

Share Document