An Analytical Method for Free Vibration Analysis of Composite Beams Subjected to Initial Thermal Stresses

2011 ◽  
Vol 482 ◽  
pp. 1-9
Author(s):  
A. Mahi ◽  
E.A. Adda-Bedia ◽  
A. Benkhedda

The purpose of this paper is to present exact solutions for the free vibration of symmetrically laminated composite beams. The present analysis includes the first shear deformation theory and the rotary inertia. The analytical solutions take into account the thermal effect on the free vibration characteristics of the composite beams. In particular, the aim of this work is to derive the exact closed-form characteristic equations for common boundary conditions. The different parameters that could affect the natural frequencies are included as factors (aspect ratio, thermal load-to-shear coefficient, ply orientation) to better perform dynamic analysis to have a good understanding of dynamic behavior of composite beams. In order to derive the governing set of equations of motion, the Hamilton’s principle is used. The system of ordinary differential equations of the laminated beams is then solved and the natural frequencies’ equations are obtained analytically for different boundary conditions. Numerical results are presented to show the influence of temperature rise, aspect ratio, boundary conditions and ply orientation on the natural frequencies of composite beams.

2012 ◽  
Vol 12 (02) ◽  
pp. 377-394 ◽  
Author(s):  
J. MOHANTY ◽  
S. K. SAHU ◽  
P. K. PARHI

This paper presents a combined experimental and numerical study of free vibration of industry-driven woven fiber glass/epoxy (G/E) composite plates with delamination. Using the first-order shear deformation theory, an eight-noded two-dimensional quadratic isoparametric element was developed, which has five degrees of freedom per node. In the experimental study, the influence of various parameters such as the delamination size, boundary conditions, fiber orientations, number of layers, and aspect ratio on the natural frequencies of delaminated composite plates are investigated. Comparison of the numerical results with experimental ones shows good agreement. Fundamental natural frequencies are found to decrease with the increase in the delamination size and fiber orientation and increases with the increase in the number of layers and aspect ratio of delaminated composite plates. The natural frequency of the delaminated composite plate varies significantly for different boundary conditions.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 1010 ◽  
Author(s):  
Bin Qin ◽  
Xing Zhao ◽  
Huifang Liu ◽  
Yongge Yu ◽  
Qingshan Wang

A general formulation is considered for the free vibration of curved laminated composite beams (CLCBs) with alterable curvatures and diverse boundary restraints. In accordance with higher-order shear deformation theory (HSDT), an improved variational approach is introduced for the numerical modeling. Besides, the multi-segment partitioning strategy is exploited for the derivation of motion equations, where the CLCBs are separated into several segments. Penalty parameters are considered to handle the arbitrary boundary conditions. The admissible functions of each separated beam segment are expanded in terms of Jacobi polynomials. The solutions are achieved through the variational approach. The proposed methodology can deal with arbitrary boundary restraints in a unified way by conveniently changing correlated parameters without interfering with the solution procedure.


Author(s):  
E. F. Joubaneh ◽  
O. R. Barry

This paper presents the free vibration analysis of a sandwich beam with a tip mass using higher order sandwich panel theory (HSAPT). The governing equations of motion and boundary conditions are obtained using Hamilton’s principle. General Differential Quadrature (GDQ) is employed to solve the system governing equations of motion. The natural frequencies and mode shapes of the system are presented and Ansys simulation is performed to validate the results. Various boundary conditions are also employed to examine the natural frequencies of the sandwich beam without tip mass and the results are compared with those found in the literature. Parametric studies are conducted to examine the effect of key design parameters on the natural frequencies of the sandwich beam with and without tip mass.


2013 ◽  
Vol 325-326 ◽  
pp. 1318-1323 ◽  
Author(s):  
A.R. Daneshmehr ◽  
D.J. Inman ◽  
A.R. Nateghi

In this paper free vibration analysis of cracked composite beams subjected to coupled bending-torsion loads are presented. The composite beam is assumed to have an open edge crack. A first order theory is applied to count for the effect of the shear deformations on natural frequencies as well as the effect of coupling in torsion and bending modes of vibration. Local flexibility matrix is used to obtain the additional boundary conditions of the beam in the crack area. After obtaining the governing equations and boundary conditions, GDQ method is applied to solve the obtained eigenvalue problem. Finally, some numerical results are given to show the efficacy of the method. In addition, to count for the effect of coupling on natural frequencies of the cracked beams, different fiber orientations are assumed and studied.


2013 ◽  
Vol 29 (2) ◽  
pp. 373-384 ◽  
Author(s):  
A. Hasani Baferani ◽  
A.R. Saidi ◽  
H. Ehteshami

AbstractIn this paper, free vibration analysis of functionally graded rectangular plate is investigated based on the first order shear deformation theory and the effect of in-plane displacements on the natural frequencies of such plate is studied. The governing equations of motion are obtained, which are five coupled partial differential equations, without any simplification. Some mathematical manipulation leads us to decouple the equations. The decoupled equations are solved by the Levy's method for various boundary conditions. As the results show, in some boundary conditions the in-plane displacements cause a drastic change of frequencies. In other words, neglecting the in-plane displacement, which is assumed in some papers, is not proper for these boundary conditions. However, in the other boundary conditions, the natural frequencies are not significantly affected by the in-plane displacements. The results for various boundary conditions are discussed in detail and some interpretations for these differences are provided. Besides to the comparisons, the accurate natural frequencies of the plate for six different boundary conditions with several aspect ratios, thickness-length ratios and power law indices are presented. The natural frequencies of Mindlin functionally graded rectangular plates with considering the in-plane displacements are reported for the first time and can be used as benchmark.


2014 ◽  
Vol 592-594 ◽  
pp. 2041-2045 ◽  
Author(s):  
B. Naresh ◽  
A. Ananda Babu ◽  
P. Edwin Sudhagar ◽  
A. Anisa Thaslim ◽  
R. Vasudevan

In this study, free vibration responses of a carbon nanotube reinforced composite beam are investigated. The governing differential equations of motion of a carbon nanotube (CNT) reinforced composite beam are presented in finite element formulation. The validity of the developed formulation is demonstrated by comparing the natural frequencies evaluated using present FEM with those of available literature. Various parametric studies are also performed to investigate the effect of aspect ratio and percentage of CNT content and boundary conditions on natural frequencies and mode shapes of a carbon nanotube reinforced composite beam. It is shown that the addition of carbon nanotube in fiber reinforced composite beam increases the stiffness of the structure and consequently increases the natural frequencies and alter the mode shapes.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
R. D. Firouz-Abadi ◽  
M. Rahmanian ◽  
M. Amabili

The present study considers the free vibration analysis of moderately thick conical shells based on the Novozhilov theory. The higher order governing equations of motion and the associate boundary conditions are obtained for the first time. Using the Frobenius method, exact base solutions are obtained in the form of power series via general recursive relations which can be applied for any arbitrary boundary conditions. The obtained results are compared with the literature and very good agreement (up to 4%) is achieved. A comprehensive parametric study is performed to provide an insight into the variation of the natural frequencies with respect to thickness, semivertex angle, circumferential wave numbers for clamped (C), and simply supported (SS) boundary conditions.


2013 ◽  
Vol 20 (3) ◽  
pp. 459-479 ◽  
Author(s):  
Meixia Chen ◽  
Jianhui Wei ◽  
Kun Xie ◽  
Naiqi Deng ◽  
Guoxiang Hou

Wave based method which can be recognized as a semi-analytical and semi-numerical method is presented to analyze the free vibration characteristics of ring stiffened cylindrical shell with intermediate large frame ribs for arbitrary boundary conditions. According to the structure type and the positions of discontinuities, the model is divided into different substructures whose vibration field is expanded by wave functions which are exactly analytical solutions to the governing equations of the motions of corresponding structure type. Boundary conditions and continuity equations between different substructures are used to form the final matrix to be solved. Natural frequencies and vibration mode shapes are calculated by wave based method and the results show good agreement with finite element method for clamped-clamped, shear diaphragm – shear diaphragm and free-free boundary conditions. Free vibration characteristics of ring stiffened cylindrical shells with intermediate large frame ribs are compared with those with bulkheads and those with all ordinary ribs. Effects of the size, the number and the distribution of intermediate large frame rib are investigated. The frame rib which is large enough is playing a role as bulkhead, which can be considered imposing simply supported and clamped constraints at one end of the cabin and dividing the cylindrical shell into several cabins vibrating separately at their own natural frequencies.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
D. A. Maturi ◽  
A. J. M. Ferreira ◽  
A. M. Zenkour ◽  
D. S. Mashat

The static and free vibration analysis of laminated shells is performed by radial basis functions collocation, according to Murakami’s zig-zag (ZZ) function (MZZF) theory . The MZZF theory accounts for through-the-thickness deformation, by considering a ZZ evolution of the transverse displacement with the thickness coordinate. The equations of motion and the boundary conditions are obtained by Carrera’s Unified Formulation and further interpolated by collocation with radial basis functions.


Author(s):  
Subrat Kumar Jena ◽  
S. Chakraverty

In this paper, a semi analytical-numerical technique called differential transform method (DTM) is applied to investigate free vibration of nanobeams based on non-local Euler–Bernoulli beam theory. The essential steps of the DTM application include transforming the governing equations of motion into algebraic equations, solving the transformed equations and then applying a process of inverse transformation to obtain accurate mode frequency. All the steps of the DTM are very straightforward, and the application of the DTM to both the equations of motion and the boundary conditions seems to be very involved computationally. Besides all these, the analysis of the convergence of the results shows that DTM solutions converge fast. In this paper, a detailed investigation has been reported and MATLAB code has been developed to analyze the numerical results for different scaling parameters as well as for four types of boundary conditions. Present results are compared with other available results and are found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document