scholarly journals TheFinite Element Modeling and Experimental Study of Sandwich Plates with Frequency-Dependent Viscoelastic Material Model

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2296 ◽  
Author(s):  
Zhicheng Huang ◽  
Xingguo Wang ◽  
Nanxing Wu ◽  
Fulei Chu ◽  
Jing Luo

Athree-layer composite plate element is developed for finite element modeling and vibration analysis of sandwich plate with frequency-dependent viscoelastic material core. The plate element is quadrilateral element bounded by four-node with 7-degree-of-freedom per node. The frequency-dependent characteristics of viscoelastic material parameters are described using the Biot model. The method of identifying the parameters of the Biot model is given. By introducing auxiliary coordinates, the Biot model is combined with the finite element equation of the viscoelastic sandwich plate. Through a series of mathematical transformations, the equation is transformed into a standard second-order steady linear system equation form to simplify the solution process. Finally, the vibration characteristics of the viscoelastic sandwich plate are analyzed and experimentally studied. The results show that the method in this paper is correct and reliable, and it has certain reference and application value for solving similar engineering vibration problems.

Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3390 ◽  
Author(s):  
Zhicheng Huang ◽  
Xingguo Wang ◽  
Nanxing Wu ◽  
Fulei Chu ◽  
Jing Luo

In this work, a finite element model was developed for vibration analysis of sandwich beam with a viscoelastic material core sandwiched between two elastic layers. The frequency-dependent viscoelastic dynamics of the sandwich beam were investigated by using finite element analysis and experimental validation. The stiffness and damping of the viscoelastic material core is frequency-dependent, which results in complex vibration modes of the sandwich beam system. A third order seven parameter Biot model was used to describe the frequency-dependent viscoelastic behavior, which was then incorporated with the finite elements of the sandwich beam. Considering the parameters identification, a strategy to determine the parameters of the Biot model has been outlined, and the curve fitting results closely follow the experiment. With identified model parameters, numerical simulations were carried out to predict the vibration and damping behavior in the first three vibration modes, and the results showed that the finite model presented here had good accuracy and efficiency in the specific frequency range of interest. The experimental testing on the viscoelastic sandwich beam validated the numerical predication. The experimental results also showed that the finite element modeling method of sandwich beams that was proposed was correct, simple and effective.


2013 ◽  
Vol 554-557 ◽  
pp. 151-156 ◽  
Author(s):  
Mehdi Saboori ◽  
Javad Gholipour ◽  
Henri Champliaud ◽  
Augustin Gakwaya ◽  
Jean Savoie ◽  
...  

Increasing acceptance and use of hydroforming technology within the aerospace industry requires a comprehensive understanding of critical issues such as the material characteristics, friction condition and hydroformability of the material. Moreover, the cost of experiments that can be reduced by accurate finite element modeling (FEM), which entails the application of adapted constitutive laws for reproducing with confidence the material behavior. In this paper, the effect of different constitutive laws on FEM of tubular shapes is presented. The free expansion process was considered for developing the FEM. Bulge height, thickness reduction and strains were determined at the maximum bulge height using different constitutive models, including Hollomon, Ludwik, Swift, Voce, Ludwigson. In order to minimize the effect of friction, the free expansion experiments were performed with no end feeding. The simulation results were compared with the experimental data to find the appropriate constitutive law for the free expansion process.


2016 ◽  
Vol 49 (1) ◽  
pp. 119-122 ◽  
Author(s):  
Yusuke Matsuura ◽  
Andrew R. Thoreson ◽  
Chunfeng Zhao ◽  
Peter C. Amadio ◽  
Kai-Nan An

Author(s):  
Kristin Myers ◽  
Wang Yao ◽  
Kyoko Yoshida ◽  
Joy Vink ◽  
Noelia Zork ◽  
...  

The mechanical function of the cervix is crucial during pregnancy when it is required to resist the compressive and tensile forces generated from the growing fetus. Pathologies of the cervical extracellular matrix (ECM), premature cervical remodeling, and alterations of cervical material properties have been implicated in placing women at high-risk for preterm birth (PTB). To understand the mechanical role of the cervix during pregnancy and to potentially identify etiologies for PTB, the overall goal of our group is to quantify ECM-material property relationships in normal and diseased human cervical tissue. In this study we present an inverse finite element analysis (IFEA) that optimizes material parameters of a viscoelastic material model to fit the stress-relaxation response of excised tissue slices to spherical indentation. Here we detail our IFEA methodology, report viscoelastic material parameters for cervical tissue slices from nonpregnant (NP) and pregnant (PG) hysterectomy patients, and report slice-by-slice data for whole cervical tissue specimens.


Sign in / Sign up

Export Citation Format

Share Document