Effect of Material Model on Finite Element Modeling of Aerospace Alloys

2013 ◽  
Vol 554-557 ◽  
pp. 151-156 ◽  
Author(s):  
Mehdi Saboori ◽  
Javad Gholipour ◽  
Henri Champliaud ◽  
Augustin Gakwaya ◽  
Jean Savoie ◽  
...  

Increasing acceptance and use of hydroforming technology within the aerospace industry requires a comprehensive understanding of critical issues such as the material characteristics, friction condition and hydroformability of the material. Moreover, the cost of experiments that can be reduced by accurate finite element modeling (FEM), which entails the application of adapted constitutive laws for reproducing with confidence the material behavior. In this paper, the effect of different constitutive laws on FEM of tubular shapes is presented. The free expansion process was considered for developing the FEM. Bulge height, thickness reduction and strains were determined at the maximum bulge height using different constitutive models, including Hollomon, Ludwik, Swift, Voce, Ludwigson. In order to minimize the effect of friction, the free expansion experiments were performed with no end feeding. The simulation results were compared with the experimental data to find the appropriate constitutive law for the free expansion process.

2018 ◽  
Vol 55 (1) ◽  
pp. 107-118 ◽  
Author(s):  
Murad Abu-Farsakh ◽  
Ahmad Souri ◽  
George Voyiadjis ◽  
Firouz Rosti

The lateral resistance of three pile group configurations was investigated using three dimensional (3-D) finite element modeling. The three pile groups considered in the study were a vertical pile group, a battered pile group, and a mix of vertical and battered piles in a group. The study was motivated by the full-scale static load test that was conducted on the M19 pier foundation in the I-10 twin span bridge in Louisiana. The static lateral resistance of the M19 battered pile group was investigated previously using a 3-D finite element simulation and verified with the aid of experimental results. In the present study, the M19 battered pile group model was used as the basis for the vertical and mixed pile groups for developing their 3-D finite element models. The nonlinear material behavior was accounted for using elastoplastic constitutive models such as the concrete damaged plasticity model and the anisotropic modified Cam clay model. The lateral resistance of the pile groups was investigated in terms of load–displacement, axial load, bending moment, pile damage, soil resistance, and p-multipliers. The results show that the battered pile group had the largest lateral resistance, followed by the mixed and vertical pile groups, respectively. The largest lateral load share was carried by the two middle rows in the battered pile group, while it was in the leading row in the vertical and mixed pile groups. The soil resistance profiles show that the vertical pile group mobilized greater soil resistance than the battered and mixed pile groups at the same lateral load. The back-calculated p-multipliers are the highest in the battered pile group case, followed by the mixed and vertical pile groups, respectively.


Author(s):  
Tugrul O¨zel ◽  
Erol Zeren

High speed machining (HSM) produces parts with substantially higher fatigue strength; increased subsurface micro-hardness and plastic deformation, mostly due to the ploughing of the cutting tool associated with residual stresses, and can have far more superior surface properties than surfaces generated by grinding and polishing. In this paper, a dynamics explicit Arbitrary Lagrangian Eulerian (ALE) based Finite Element Method (FEM) modeling is employed. FEM techniques such as adaptive meshing, explicit dynamics and fully coupled thermal-stress analysis are combined to realistically simulate high speed machining with an orthogonal cutting model. The Johnson-Cook model is used to describe the work material behavior. A detailed friction modeling at the tool-chip and tool-work interfaces is also carried. Work material flow around the round edge-cutting tool is successfully simulated without implementing a chip separation criterion and without the use of a remeshing scheme. Finite Element modeling of stresses and resultant surface properties induced by round edge cutting tools is performed as case studies for high speed machining of AISI 1045 and AISI 4340 steels, and Ti6Al4V titanium alloy.


2016 ◽  
Vol 49 (1) ◽  
pp. 119-122 ◽  
Author(s):  
Yusuke Matsuura ◽  
Andrew R. Thoreson ◽  
Chunfeng Zhao ◽  
Peter C. Amadio ◽  
Kai-Nan An

2011 ◽  
Vol 189-193 ◽  
pp. 4419-4424
Author(s):  
Behnam Davoodi ◽  
Mohammad Bagher Momeni ◽  
Mohammad Reza Eslami

The experimental machining and finite element modeling of 2D turning of AA5083 is presented. The ABAQUS/Explicit machining simulation software is applied for the finite element modeling. The experimental orthogonal machining for were conducted to investigate the effects of various machining parameters on chip morphology, machined surface condition, and resulting cutting forces. The measured cutting forces was compared to finite element modeling results with good agreement. The effects of cutting speed and rack angle of tool cutting factor for productivity in AA5083 machining, depth of cut, on the peak tool temperature are investigated. 2D Finite Element Model (FEM) of chip formation process, set up with an Arbitrary Lagrangian-Eulerian (ALE) formulation, proposed in the software ABAQUS/Explicit .the thermo-viscoplastic behavior of the workpiece material is modeled by the Johnson-Cook (JC) constitutive law. This study explores the use of experimental and finite element modeling to study the cutting force. Results of this research help to guide the design of new cutting tool materials and coatings and the studies of chip formation to further advance the productivity of AA5083 machining.


Sign in / Sign up

Export Citation Format

Share Document