scholarly journals Blending Powder Process for Recycling Sintered Nd-Fe-B Magnets

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3049
Author(s):  
Pavel A. Prokofev ◽  
Natalia B. Kolchugina ◽  
Katerina Skotnicova ◽  
Gennady S. Burkhanov ◽  
Miroslav Kursa ◽  
...  

The wide application of Nd-Fe-B permanent magnets, in addition to rare-earth metal resource constraints, creates the necessity of the development of efficient technologies for recycling sintered Nd-Fe-B permanent magnets. In the present study, a magnet-to-magnet recycling process is considered. As starting materials, magnets of different grades were used, which were processed by hydrogen decrepitation and blending the powder with NdHx. Composition inhomogeneity in the Nd2Fe14B-based magnetic phase grains in the recycled magnets and the existence of a core-shell structure consisting of a Nd-rich (Dy-depleted) core and Nd-depleted (Dy-enriched) shell are demonstrated. The formation of this structure results from the grain boundary diffusion process of Dy that occurs during the sintering of magnets prepared from a mixture of Dy-free (N42) and Dy-containing magnets. The increase in the coercive force of the N42 magnet was shown to be 52%. The simultaneous retention of the remanence, and even its increase, were observed and explained by the improved isolation of the main magnetic phase grains as well as their alignment.

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3881 ◽  
Author(s):  
Yaojun Lu ◽  
Shuwei Zhong ◽  
Munan Yang ◽  
Chunming Wang ◽  
Liuyimei Yang ◽  
...  

The diffusion of Tb in sintered Nd-Fe-B magnets by the grain boundary diffusion process can significantly enhance coercivity. However, due to the influence of microstructures at different depths, the coercivity increment and temperature stability gradually decreases with the increase of diffusion depth, and exhibit good corrosion resistance at a sub-surface layer (300–1000 μm). According to the Electron Probe Micro-analyzer (EPMA) test results and the diffusion mechanism, the grain boundary and intragranular diffusion behavior under different Tb concentration gradients were analyzed, and the diffusion was divided into three stages. The first stage is located on the surface of the magnet, which formed a thick core-shell structure and a large number of RE-rich phases. The second stage is located in the sub-surface layer, forming a uniform and continuous RE-rich phase and thin core-shell structure. The third stage is located deeper in the magnet, and the Tb enrichment only existed at the triangular grain boundary.


2015 ◽  
Vol 53 (4) ◽  
pp. 287-293
Author(s):  
Byung-Hyun Choi ◽  
Young Jin Kang ◽  
Sung-Hun Jung ◽  
Yong-Tae An ◽  
Mi-Jung Ji

2015 ◽  
Vol 30 (6) ◽  
pp. 610 ◽  
Author(s):  
ZHENG Guo-Qiang ◽  
ZHANG Wen-Chao ◽  
XU Xing ◽  
SHEN Rui-Qi ◽  
DENG Ji-Ping ◽  
...  

2010 ◽  
Vol 107 (10) ◽  
pp. 104106 ◽  
Author(s):  
L. P. Curecheriu ◽  
M. T. Buscaglia ◽  
V. Buscaglia ◽  
L. Mitoseriu ◽  
P. Postolache ◽  
...  

Author(s):  
Linli Zhu ◽  
Chen Hao ◽  
Saisai Zhou ◽  
Xiaohong Wang ◽  
Tiantian Zhou ◽  
...  

2021 ◽  
Vol 31 (1) ◽  
pp. 24-26
Author(s):  
Galina M. Kuz’micheva ◽  
Olesya I. Timaeva ◽  
Irina P. Chikhacheva ◽  
Roman V. Svetogorov ◽  
Ratibor G. Chumakov ◽  
...  

2021 ◽  
Vol 4 (3) ◽  
pp. 2218-2230
Author(s):  
Sudhakaran Moopri Singer Pandiyarajan ◽  
Ganesh Kumar Veerasubramani ◽  
Roshan Mangal Bhattarai ◽  
Gnanaselvan Gnanasekaran ◽  
Sang Jae Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document