scholarly journals Chitosan-Hydrogel Polymeric Scaffold Acts as an Independent Primary Inducer of Osteogenic Differentiation in Human Mesenchymal Stromal Cells

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3546
Author(s):  
Simona Bernardi ◽  
Federica Re ◽  
Katia Bosio ◽  
Kamol Dey ◽  
Camillo Almici ◽  
...  

Regenerative medicine aims to restore damaged tissues and mainly takes advantage of human mesenchymal stromal cells (hMSCs), either alone or combined with three-dimensional scaffolds. The scaffold is generally considered a support, and its contribution to hMSC proliferation and differentiation is unknown or poorly investigated. The aim of this study was to evaluate the capability of an innovative three-dimensional gelatin–chitosan hybrid hydrogel scaffold (HC) to activate the osteogenic differentiation process in hMSCs. We seeded hMSCs from adipose tissue (AT-hMSCs) and bone marrow (BM-hMSCs) in highly performing HC of varying chitosan content in the presence of growing medium (GM) or osteogenic medium (OM) combined with Fetal Bovine Serum (FBS) or human platelet lysate (hPL). We primarily evaluated the viability and the proliferation of AT-hMSCs and BM-hMSCs under different conditions. Then, in order to analyse the activation of osteogenic differentiation, the osteopontin (OPN) transcript was absolutely quantified at day 21 by digital PCR. OPN was expressed under all conditions, in both BM-hMSCs and AT-hMSCs. Cells seeded in HC cultured with OM+hPL presented the highest OPN transcript levels, as expected. Interestingly, both BM-hMSCs and AT-hMSCs cultured with GM+FBS expressed OPN. In particular, BM-hMSCs cultured with GM+FBS expressed more OPN than those cultured with GM+hPL and OM+FBS; AT-hMSCs cultured with GM+FBS presented a lower expression of OPN when compared with those cultured with GM+hPL, but no significant difference was detected when compared with AT-hMSCs cultured with OM+FBS. No OPN expression was detected in negative controls. These results show the capability of HC to primarily and independently activate osteogenic differentiation pathways in hMCSs. Therefore, these scaffolds may be considered no more as a simple support, rather than active players in the differentiative and regenerative process.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Andrea Di Luca ◽  
Barbara Ostrowska ◽  
Ivan Lorenzo-Moldero ◽  
Antonio Lepedda ◽  
Wojcech Swieszkowski ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3852
Author(s):  
Federica Re ◽  
Luciana Sartore ◽  
Elisa Borsani ◽  
Matteo Ferroni ◽  
Camilla Baratto ◽  
...  

Gelatin–dextran hydrogel scaffolds (G-PEG-Dx) were evaluated for their ability to activate the bone marrow human mesenchymal stromal cells (BM-hMSCs) towards mineralization. G-PEG-Dx1 and G-PEG-Dx2, with identical composition but different architecture, were seeded with BM-hMSCs in presence of fetal bovine serum or human platelet lysate (hPL) with or without osteogenic medium. G-PEG-Dx1, characterized by a lower degree of crosslinking and larger pores, was able to induce a better cell colonization than G-PEG-Dx2. At day 28, G-PEG-Dx2, with hPL and osteogenic factors, was more efficient than G-PEG-Dx1 in inducing mineralization. Scanning electron microscopy (SEM) and Raman spectroscopy showed that extracellular matrix produced by BM-hMSCs and calcium-positive mineralization were present along the backbone of the G-PEG-Dx2, even though it was colonized to a lesser degree by hMSCs than G-PEG-Dx1. These findings were confirmed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), detecting distinct lipidomic signatures that were associated with the different degree of scaffold mineralization. Our data show that the architecture and morphology of G-PEG-Dx2 is determinant and better than that of G-PEG-Dx1 in promoting a faster mineralization, suggesting a more favorable and active role for improving bone repair.


2010 ◽  
Vol 25 (10) ◽  
pp. 2126-2137 ◽  
Author(s):  
Sally K Martin ◽  
Stephen Fitter ◽  
Li Fei Bong ◽  
Jennifer J Drew ◽  
Stan Gronthos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document