scholarly journals New Grain Formation by Constitutional Undercooling Due to Remelting of Segregated Microstructures during Powder Bed Fusion

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5517
Author(s):  
Alexander M. Rausch ◽  
Martin R. Gotterbarm ◽  
Julian Pistor ◽  
Matthias Markl ◽  
Carolin Körner

A microstructure has significant influence on the mechanical properties of parts. For isotropic properties, the formation of equiaxed microstructures by the nucleation of new grains during solidification is necessary. For conventional solidification processes, nucleation is well-understood. Regarding powder bed fusion, the repeated remelting of previous layers can cause nucleation under some conditions that are not explainable with classical theories. Here, we investigate this nucleation mechanism with an unprecedented level of detail. In the first step, we built samples with single crystalline microstructures from Ni-base superalloy IN718 by selective electron beam melting. In the second step, single lines with different parameters were molten on top of these samples. We observed a huge number of new grains by nucleation at the melt-pool border of these single lines. However, new grains can only prevail if the alignment of their crystallographic orientation with respect to the local temperature gradient is superior to that of the base material. The current hypothesis is that nucleation at the melt-pool border happens due to remelting microsegregations from former solidification processes leading to constitutional undercooling directly at the onset of solidification. This study offers the opportunity to understand and exploit this mechanism for different manufacturing processes.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3324
Author(s):  
Alexander M. Rausch ◽  
Julian Pistor ◽  
Christoph Breuning ◽  
Matthias Markl ◽  
Carolin Körner

Tailoring the mechanical properties of parts by influencing the solidification conditions is a key topic of powder bed fusion. Depending on the application, single crystalline, columnar, or equiaxed microstructures are desirable. To produce single crystals or equiaxed microstructures, the control of nucleation is of outstanding importance. Either it should be avoided or provoked. There are also applications, such as turbine blades, where both microstructures at different locations are required. Here, we investigate nucleation at the melt-pool border during the remelting of CMSX-4® samples built using powder bed fusion. We studied the difference between remelting as-built and homogenized microstructures. We identified two new mechanisms that led to grain formation at the beginning of solidification. Both mechanisms involved a change in the solidification microstructure from the former remelted and newly forming material. For the as-built samples, a discrepancy between the former and new dendrite arm spacing led to increased interdentritic undercooling at the beginning of solidification. For the heat-treated samples, the collapse of a planar front led to new grains. To identify these mechanisms, we conducted experimental and numerical investigations. The identification of such mechanisms during powder bed fusion is a fundamental prerequisite to controlling the solidification conditions to produce single crystalline and equiaxed microstructures.


Author(s):  
Kevin Florio ◽  
Dario Puccio ◽  
Giorgio Viganò ◽  
Stefan Pfeiffer ◽  
Fabrizio Verga ◽  
...  

AbstractPowder bed fusion (PBF) of ceramics is often limited because of the low absorptance of ceramic powders and lack of process understanding. These challenges have been addressed through a co-development of customized ceramic powders and laser process capabilities. The starting powder is made of a mix of pure alumina powder and alumina granules, to which a metal oxide dopant is added to increase absorptance. The performance of different granules and process parameters depends on a large number of influencing factors. In this study, two methods for characterizing and analyzing the PBF process are presented and used to assess which dopant is the most suitable for the process. The first method allows one to analyze the absorptance of the laser during the melting of a single track using an integrating sphere. The second one relies on in-situ video imaging using a high-speed camera and an external laser illumination. The absorption behavior of the laser power during the melting of both single tracks and full layers is proven to be a non-linear and extremely dynamic process. While for a single track, the manganese oxide doped powder delivers higher and more stable absorptance. When a full layer is analyzed, iron oxide-doped powder is leading to higher absorptance and a larger melt pool. Both dopants allow the generation of a stable melt-pool, which would be impossible with granules made of pure alumina. In addition, the present study sheds light on several phenomena related to powder and melt-pool dynamics, such as the change of melt-pool shape and dimension over time and powder denudation effects.


2019 ◽  
Vol 3 (1) ◽  
pp. 21 ◽  
Author(s):  
Morgan Letenneur ◽  
Alena Kreitcberg ◽  
Vladimir Brailovski

A simplified analytical model of the laser powder bed fusion (LPBF) process was used to develop a novel density prediction approach that can be adapted for any given powder feedstock and LPBF system. First, calibration coupons were built using IN625, Ti64 and Fe powders and a specific LPBF system. These coupons were manufactured using the predetermined ranges of laser power, scanning speed, hatching space, and layer thickness, and their densities were measured using conventional material characterization techniques. Next, a simplified melt pool model was used to calculate the melt pool dimensions for the selected sets of printing parameters. Both sets of data were then combined to predict the density of printed parts. This approach was additionally validated using the literature data on AlSi10Mg and 316L alloys, thus demonstrating that it can reliably be used to optimize the laser powder bed metal fusion process.


Author(s):  
Yong Ren ◽  
Qian Wang ◽  
Panagiotis (Pan) Michaleris

Abstract Laser powder bed fusion (L-PBF) additive manufacturing (AM) is one type of metal-based AM process that is capable of producing high-value complex components with a fine geometric resolution. As melt-pool characteristics such as melt-pool size and dimensions are highly correlated with porosity and defects in the fabricated parts, it is crucial to predict how process parameters would affect the melt-pool size and dimensions during the build process to ensure the build quality. This paper presents a two-level machine learning (ML) model to predict the melt-pool size during the scanning of a multi-track build. To account for the effect of thermal history on melt-pool size, a so-called (pre-scan) initial temperature is predicted at the lower-level of the modeling architecture, and then used as a physics-informed input feature at the upper-level for the prediction of melt-pool size. Simulated data sets generated from the Autodesk's Netfabb Simulation are used for model training and validation. Through numerical simulations, the proposed two-level ML model has demonstrated a high prediction performance and its prediction accuracy improves significantly compared to a naive one-level ML without using the initial temperature as an input feature.


Author(s):  
J. C. Heigel ◽  
B. M. Lane

This work presents high speed thermographic measurements of the melt pool length during single track laser scans on nickel alloy 625 substrates. Scans are made using a commercial laser powder bed fusion machine while measurements of the radiation from the surface are made using a high speed (1800 frames per second) infrared camera. The melt pool length measurement is based on the detection of the liquidus-solidus transition that is evident in the temperature profile. Seven different combinations of programmed laser power (49 W to 195 W) and scan speed (200 mm/s to 800 mm/s) are investigated and numerous replications using a variety of scan lengths (4 mm to 12 mm) are performed. Results show that the melt pool length reaches steady state within 2 mm of the start of each scan. Melt pool length increases with laser power, but its relationship with scan speed is less obvious because there is no significant difference between cases performed at the highest laser power of 195 W. Although keyholing appears to affect the anticipated trends in melt pool length, further research is required.


Sign in / Sign up

Export Citation Format

Share Document