scholarly journals Predictive Model for the Surface Tension Changes of Chemical Solutions Used in a Clean-in-Place System

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3479
Author(s):  
Joanna Piepiórka-Stepuk ◽  
Monika Sterczyńska ◽  
Tomasz Kalak ◽  
Marek Jakubowski

The paper presents the results concerning the influence of concentration and storage time on the equilibrium surface tension of chemical solutions used in a clean-in place (CIP) system. Standard cleaning solutions (prepared under laboratory conditions) and industrial solutions (used in a CIP system in a brewery) were subjected to tests. Solutions from the brewery were collected after being regenerated and changes in equilibrium surface tension were studied during a three-month storage. In the statistical analysis of the solutions, standard deviations were determined in relation to the averages, and a Tukey’s multiple comparison test was performed to determine the effect of dependent variables on the surface tension of solutions. From the results, a nonlinear regression model was developed that provided a mathematical description of the kinetics of changes in the wetting properties of the solutions during their storage. A linear–logarithmic function was adopted to describe the regeneration. Numerical calculations were performed based on the nonlinear least squares method using the Gauss–Newton algorithm. The adequacy of the regression models with respect to the empirical data was verified by the coefficient of determination R and the standard error of estimation Se. The results showed that as the concentration of the substance in the cleaning solution increased, its wetting properties decreased. The same effect was observed with increased storage time as the greatest changes occurred during the first eight weeks. The study also showed that the use of substances to stabilize the cleaning solutions prevented deterioration of their wetting properties, regardless of the concentration of the active substance or storage time.

2017 ◽  
Vol 147 (8) ◽  
pp. 084902 ◽  
Author(s):  
Siddharth Paliwal ◽  
Vasileios Prymidis ◽  
Laura Filion ◽  
Marjolein Dijkstra

1989 ◽  
Vol 66 (5) ◽  
pp. 2039-2044 ◽  
Author(s):  
M. R. Mercurio ◽  
J. M. Fiascone ◽  
D. M. Lima ◽  
H. C. Jacobs

In vitro surface properties of pulmonary surfactant thought to be essential to its ability to increase pulmonary compliance include minimum surface tension less than 10 dyn/cm and large surface tension variability and hysteresis. We tested four surface-active agents (Tween 20, a detergent; and FC-100, FC-430, and FC-431, industrial fluorocarbons), all lacking these properties, for their ability to increase pulmonary compliance in surfactant-deficient premature rabbits. Fetal rabbits were delivered by cesarean section at 27 days (full term = 31 days) and injected via tracheostomy with 50% lactated Ringer solution, adult rabbit surfactant, or one of the four experimental agents. Dynamic compliance was measured using 1 h of mechanical ventilation followed by alveolar lavage. Each experimental agent produced a dynamic compliance significantly higher than 50% lactated Ringer solution and statistically equal to or greater than natural surfactant. Equilibrium surface tension of the agents and minimum and equilibrium surface tension of the alveolar washes each correlated with compliance (P less than 0.05). This suggests that some surface properties of pulmonary surfactant believed to be essential are not, although surface tension does seem to play a role in pulmonary compliance.


1971 ◽  
Vol 27 (3) ◽  
pp. 411-418 ◽  
Author(s):  
Craig Maze ◽  
George Burnet

2021 ◽  
pp. 118305
Author(s):  
Thu Thi-Yen Le ◽  
Siam Hussain ◽  
Ruey-Yug Tsay ◽  
Boris A. Noskov ◽  
Alexander Akentiev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document