scholarly journals Inverse Transformation in Eddy Current Tomography with Continuous Optimization of Reference Defect Parameters

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4778
Author(s):  
Paweł Nowak ◽  
Roman Szewczyk ◽  
Anna Ostaszewska-Liżewska

This paper presents a methodology of inverse tomography transformation in eddy current tomography with the use of continuous optimization of reference defect parameters. Ferromagnetic steel samples with rectangular air inclusion defects of known dimensions were prepared and measured using an eddy current tomography setup. FEM-based (Finite Element Method based) forward tomography transformation was developed and utilized in inverse tomography transformation. The presented method of inverse tomography transformation is based on the continuous optimization of parameters that can describe the sample, such as the diameter and dimensions of the reference defect. The obtained results of inverse tomography transformation were in high accordance with the real parameters of the samples. Additionally, the presented method had acceptable repeatability. The obtained values of the sample parameters fit within the range of expanded uncertainty when compared to the real parameters of the sample.

Author(s):  
Karl Hollaus

Purpose The simulation of eddy currents in laminated iron cores by the finite element method (FEM) is of great interest in the design of electrical devices. Modeling each laminate by finite elements leads to extremely large nonlinear systems of equations impossible to solve with present computer resources reasonably. The purpose of this study is to show that the multiscale finite element method (MSFEM) overcomes this difficulty. Design/methodology/approach A new MSFEM approach for eddy currents of laminated nonlinear iron cores in three dimensions based on the magnetic vector potential is presented. How to construct the MSFEM approach in principal is shown. The MSFEM with the Biot–Savart field in the frequency domain, a higher-order approach, the time stepping method and with the harmonic balance method are introduced and studied. Findings Various simulations demonstrate the feasibility, efficiency and versatility of the new MSFEM. Originality/value The novel MSFEM solves true three-dimensional eddy current problems in laminated iron cores taking into account of the edge effect.


Sign in / Sign up

Export Citation Format

Share Document