scholarly journals Modeling and Simulation of Human Body Heat Transfer System Based on Air Space Values in 3D Clothing Model

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6675
Author(s):  
Sara Mosleh ◽  
Mulat Alubel Abtew ◽  
Pascal Bruniaux ◽  
Guillaume Tartare ◽  
Emil-Constantin Loghin ◽  
...  

Comfort can be considered as subjective feeling, which could be affected by the external ambient, by the physical activity, and by clothing. Considering the human body heat transfer system, it mainly depends on various parameters including clothing materials, external and internal environment, etc. The purpose of the current paper is to study and establish a quantitative relationship between one of the clothing parameters, ease allowance (air gap values) and the heat transfer through the human body to clothing materials and then to the environment. The study considered clothing which is integrated with the 3D ease allowance from the anthropometric and morphological data. Such incorporating of the clothing’s 3D ease control was essential to properly manage the air space between the body and the proposed clothing thermal regulation model. In the context of thermal comfort, a clothing system consisting of the human body, an ease allowance under clothing, a layer of textile materials, and a peripheral layer adjacent to the textile material was used. For the complete system, the heat transfer from the skin to the environment, which is influenced by thermoregulation of the human body, air gap, tissue, and environmental conditions were also considered. To model and predict the heat transfer between the human body and the temperature of skin and clothes, a 3D adaptive garment which could be adjusted with ease allowance was used. In the paper, a thermoregulatory model was developed and proposed to predict the temperature and heat within clothing material, skin, and air space. Based on the result, in general the main difference in the temperature of clothing and skin from segment to segment is due to the uneven distribution of air layers under the clothing.

2018 ◽  
Vol 136 ◽  
pp. 1567-1571 ◽  
Author(s):  
I. Moscato ◽  
L. Barucca ◽  
S. Ciattaglia ◽  
P.A. Di Maio ◽  
G. Federici

2021 ◽  
Author(s):  
Yanyu Chen ◽  
Ganggang Li ◽  
Lei Chen ◽  
Binbin Qiu

2019 ◽  
Vol 146 ◽  
pp. 2416-2420 ◽  
Author(s):  
I. Moscato ◽  
L. Barucca ◽  
S. Ciattaglia ◽  
F. D’Aleo ◽  
P.A. Di Maio ◽  
...  

2014 ◽  
Vol 10 (4) ◽  
pp. 613-623 ◽  
Author(s):  
Victoria K. Ananingsih ◽  
Edda Y. L. Sim ◽  
Xiao Dong Chen ◽  
Weibiao Zhou

Abstract Understanding of heat transfer during steaming is important to optimize the processing of steamed bread and to produce desired qualities in the final product. Physicochemical changes occur during steaming of the dough which might be impacted upon by the heat transfer system. In this study, a mathematical model was developed to describe the heat transfer system in the bread being steaming throughout the heating process. The Forward Euler method was employed for solving the three-dimensional partial differential equation set for heat transfer to produce temperature profiles at a number of individual locations in the steamed bread during its steaming. All the comparisons between the model-predicted values and the experimental results produced root mean square error values ranged from 1.391 to 3.545 and R2 values of all greater than 0.93. Therefore, it is confirmed that the model has a good performance and can be used to predict temperature profiles in the bread during steaming.


Sign in / Sign up

Export Citation Format

Share Document