scholarly journals Identification of the Fractional Zener Model Parameters for a Viscoelastic Material over a Wide Range of Frequencies and Temperatures

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7024
Author(s):  
Zdzisław M. Pawlak ◽  
Arkadiusz Denisiewicz

The paper presents an analysis of the rheological properties of a selected viscoelastic material, which is dedicated to the reduction of vibrations in structures subjected to dynamic loads. A four-parameter, fractional Zener model was used to describe the dynamic behavior of the tested material. The model parameters were identified on the basis of laboratory tests performed at different temperatures and for different vibration frequencies. After proving that the material is thermoreologically simple, the so-called master curves were created using a horizontal shift factor. The Williams–Landel–Ferry formula was applied to create graphs of the master curves, the constants of which were determined for the selected temperature. The resulting storage and loss module functions spanned several decades in the frequency domain. The parameters of the fractional Zener model were identified by fitting the entire range of the master curves with the gradientless method (i.e., Particle Swarm Optimization), consisting in searching for the best-fitted solution in a set of feasible solutions. The parametric analysis of the obtained solutions allowed for the formulation of conclusions regarding the effectiveness of the applied rheological model.

2019 ◽  
Vol 285 ◽  
pp. 00009
Author(s):  
Roman Lewandowski ◽  
Przemysław Wielentejczyk

A method for determining the dynamic characteristics of structures made of viscoelastic material is presented. The fractional Zener model is used to the describe the rheological properties of materials. All of the elements of a structure must be built of material with identical rheological properties. The solution to the linear eigenvalue problem for some elastic structure and the solution to a single nonlinear algebraic equation are needed to obtain the dynamic characteristics of a viscoelastic structure. Moreover, the frequency response functions are determined in a very efficient way. The results of a representative calculation are presented and briefly discussed.


Author(s):  
Vikash Pandey ◽  
Sven Peter Näsholm ◽  
Sverre Holm

AbstractWe apply the framework of tempered fractional calculus to investigate the spatial dispersion of elastic waves in a one-dimensional elastic bar characterized by range-dependent nonlocal interactions. The measure of the interaction is given by the attenuation kernel present in the constitutive stress-strain relation of the bar, which follows from the Kröner-Eringen’s model of nonlocal elasticity. We employ a fractional power-law attenuation kernel and spatially temper it, to make the model physically valid and mathematically consistent. The spatial dispersion relation is derived, but it turns out to be difficult to solve, both analytically and numerically. Consequently, we use numerical techniques to extract the real and imaginary parts of the complex wavenumber for a wide range of frequency values. From the dispersion plots, it is found that the phase velocity dispersion of elastic waves in the tempered nonlocal elastic bar is similar to that from the time-fractional Zener model. Further, we also examine the unusual attenuation pattern obtained for the elastic wave propagation in the bar.


Meccanica ◽  
2021 ◽  
Author(s):  
Jan Freundlich

AbstractThe presented work concerns the kinematically excited transient vibrations of a cantilever beam with a mass element fixed to its free end. The Euler–Bernoulli beam theory and the fractional Zener model of the beam material are assumed. A fractional Caputo derivative is used to formulate a viscoelastic material law. A characteristic equation, modal frequencies, eigenfunction and orthogonality conditions are achieved for the beam considered. The equations of motion of the system are solved numerically. A numerical solution of a multi-term fractional differential equation is obtained by means of a conversion to a mixed system of ordinary and fractional differential equations, each of the order of $$0 < \gamma \le 1$$ 0 < γ ≤ 1 . The transient time histories of the beam vibrations during the passage through resonance are calculated. A comparison between the beam responses obtained with a fractional and an integer viscoelastic material model is presented. The calculations performed reveal that use of the fractional damping affects on the time histories of the system. The calculated beam responses show that for some values of the order of the fractional derivative $$\gamma$$ γ , the amplitudes occurring in the area of the second resonance are greater than those obtained in the area of the first resonance, which does not occur in the case of the integer order of the fractional derivative. Moreover, an evaluation is made of the difference between the results obtained for the calculations using the fractional Zener model and the fractional Kelvin model. It is shown that for some physical beam parameters, the calculation results obtained using both models are virtually the same for both models, which means that the the simpler, fractional Kelvin–Voigt material can be used instead of the fractional Zener material model. This simplifies the solution and decreases the time needed to make the numerical calculations.


2020 ◽  
Vol 23 (6) ◽  
pp. 1570-1604
Author(s):  
Teodor Atanacković ◽  
Stevan Pilipović ◽  
Dora Seleši

Abstract Equations of motion for a Zener model describing a viscoelastic rod are investigated and conditions ensuring the existence, uniqueness and regularity properties of solutions are obtained. Restrictions on the coefficients in the constitutive equation are determined by a weak form of the dissipation inequality. Various stochastic processes related to the Karhunen-Loéve expansion theorem are presented as a model for random perturbances. Results show that displacement disturbances propagate with an infinite speed. Some corrections of already published results for a non-stochastic model are also provided.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 457-467 ◽  
Author(s):  
Z W Luo ◽  
S H Tao ◽  
Z-B Zeng

Abstract Three approaches are proposed in this study for detecting or estimating linkage disequilibrium between a polymorphic marker locus and a locus affecting quantitative genetic variation using the sample from random mating populations. It is shown that the disequilibrium over a wide range of circumstances may be detected with a power of 80% by using phenotypic records and marker genotypes of a few hundred individuals. Comparison of ANOVA and regression methods in this article to the transmission disequilibrium test (TDT) shows that, given the genetic variance explained by the trait locus, the power of TDT depends on the trait allele frequency, whereas the power of ANOVA and regression analyses is relatively independent from the allelic frequency. The TDT method is more powerful when the trait allele frequency is low, but much less powerful when it is high. The likelihood analysis provides reliable estimation of the model parameters when the QTL variance is at least 10% of the phenotypic variance and the sample size of a few hundred is used. Potential use of these estimates in mapping the trait locus is also discussed.


2021 ◽  
Vol 9 (4) ◽  
pp. 839
Author(s):  
Muhammad Rafiullah Khan ◽  
Vanee Chonhenchob ◽  
Chongxing Huang ◽  
Panitee Suwanamornlert

Microorganisms causing anthracnose diseases have a medium to a high level of resistance to the existing fungicides. This study aimed to investigate neem plant extract (propyl disulfide, PD) as an alternative to the current fungicides against mango’s anthracnose. Microorganisms were isolated from decayed mango and identified as Colletotrichum gloeosporioides and Colletotrichum acutatum. Next, a pathogenicity test was conducted and after fulfilling Koch’s postulates, fungi were reisolated from these symptomatic fruits and we thus obtained pure cultures. Then, different concentrations of PD were used against these fungi in vapor and agar diffusion assays. Ethanol and distilled water were served as control treatments. PD significantly (p ≤ 0.05) inhibited more of the mycelial growth of these fungi than both controls. The antifungal activity of PD increased with increasing concentrations. The vapor diffusion assay was more effective in inhibiting the mycelial growth of these fungi than the agar diffusion assay. A good fit (R2, 0.950) of the experimental data in the Gompertz growth model and a significant difference in the model parameters, i.e., lag phase (λ), stationary phase (A) and mycelial growth rate, further showed the antifungal efficacy of PD. Therefore, PD could be the best antimicrobial compound against a wide range of microorganisms.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Karim El-Laithy ◽  
Martin Bogdan

An integration of both the Hebbian-based and reinforcement learning (RL) rules is presented for dynamic synapses. The proposed framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather than the synaptic weights. This is performed using both the value and the sign of the temporal difference in the reward signal after each trial. Applying this framework, a spiking network with spike-timing-dependent synapses is tested to learn the exclusive-OR computation on a temporally coded basis. Reward values are calculated with the distance between the output spike train of the network and a reference target one. Results show that the network is able to capture the required dynamics and that the proposed framework can reveal indeed an integrated version of Hebbian and RL. The proposed framework is tractable and less computationally expensive. The framework is applicable to a wide class of synaptic models and is not restricted to the used neural representation. This generality, along with the reported results, supports adopting the introduced approach to benefit from the biologically plausible synaptic models in a wide range of intuitive signal processing.


Author(s):  
Afshin Anssari-Benam ◽  
Andrea Bucchi ◽  
Giuseppe Saccomandi

AbstractThe application of a newly proposed generalised neo-Hookean strain energy function to the inflation of incompressible rubber-like spherical and cylindrical shells is demonstrated in this paper. The pressure ($P$ P ) – inflation ($\lambda $ λ or $v$ v ) relationships are derived and presented for four shells: thin- and thick-walled spherical balloons, and thin- and thick-walled cylindrical tubes. Characteristics of the inflation curves predicted by the model for the four considered shells are analysed and the critical values of the model parameters for exhibiting the limit-point instability are established. The application of the model to extant experimental datasets procured from studies across 19th to 21st century will be demonstrated, showing favourable agreement between the model and the experimental data. The capability of the model to capture the two characteristic instability phenomena in the inflation of rubber-like materials, namely the limit-point and inflation-jump instabilities, will be made evident from both the theoretical analysis and curve-fitting approaches presented in this study. A comparison with the predictions of the Gent model for the considered data is also demonstrated and is shown that our presented model provides improved fits. Given the simplicity of the model, its ability to fit a wide range of experimental data and capture both limit-point and inflation-jump instabilities, we propose the application of our model to the inflation of rubber-like materials.


Sign in / Sign up

Export Citation Format

Share Document