scholarly journals An Improved Speciation Method Combining IC with ICPOES and Its Application to Iodide and Iodate Diffusion Behavior in Compacted Bentonite Clay

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7056
Author(s):  
Chuan-Pin Lee ◽  
Yanqin Hu ◽  
Dongyang Chen ◽  
Enhui Wu ◽  
Ziteng Wang ◽  
...  

An accurate and effective method combining ion chromatography (IC) and inductively coupled plasma optical emission spectrometry (ICP-OES) was applied in this work to qualitatively and quantitatively analyze individual and co-existing iodide (I−) and iodate (IO3−) at various concentrations. More specifically, a very strong linear relationship for the peak area for the co-existing I− and IO3− ions was reached, and a high resolution value between two peaks was observed, which proves the effectiveness of our combined IC-ICP-OES method at analyzing iodine species. We observed lower accessible porosity for the diffusion of both I− and IO3− in samples of bentonite clay using IC-ICP-OES detection methods, where the effective diffusion coefficient varied based on the anion exclusion effect and the size of the diffusing molecules. In fact, the distribution coefficients (Kd) of both I− and IO3− were close to 0, which indicates that there was no adsorption on bentonite clay. This finding can be explained by the fact that no change in speciation took place during the diffusion of I− and IO3− ions in bentonite clay. Our IC-ICP-OES method can be used to estimate the diffusion coefficients of various iodine species in natural environments.

Author(s):  
Masoud Aghahoseini ◽  
Gholamhassan Azimi ◽  
M. K. Amini

Determination of traces of Cd, Co, Cu, Mn and Pb elements in zirconium and its alloys by inductively coupled plasma optical emission spectrometry (ICP OES) suffers from severe spectral interferences...


2014 ◽  
Vol 97 (3) ◽  
pp. 687-699 ◽  
Author(s):  
James M Bartos ◽  
Barton L Boggs ◽  
J Harold Falls ◽  
Sanford A Siegel

Abstract A two-part single-laboratory validation study was conducted for determination of the P and K content in commercial fertilizer materials by inductively coupled plasma-optical emission spectrometry (ICP- OES). While several methods exist for determination of P and K in fertilizer products, the main focus of this study was on ICP-OES determination, which offers several unique advantages. Fertilizer samples with consensus P and K values from the Magruder and Association of Fertilizer and Phosphate Chemists (AFPC) check sample programs were selected for this study. Validation materials ranging from 4.4 to 52.4% P2O5 (1.7 to 22.7% P) and 3 to 62% K2O (2.5 to 51.5% K) were utilized. Because all P and K compounds contained in fertilizer materials are not "available" for plants to use, this study was conducted in two parts. Part A focused on ammonium citrate–disodium EDTA as the extraction solvent, as it estimates the pool of fertilizer P and K that is considered available to plants. Part B focused on hydrochloric acid as the digestion solvent, as it estimates the total P and K content of the fertilizer product. Selectivity studies indicated that this method can have a high bias for fertilizer products containing sources of phosphite or organic P compared to gravimetric or colorimetric methods that measure just orthophosphate. Provided the analytical challenges outlined in this study are addressed, this method offers the potential for a quick, accurate, and safe alternative for determining the P and K content of commercial inorganic fertilizer materials.


Sign in / Sign up

Export Citation Format

Share Document